Advertisement

Delegated Preparation of Quantum Error Correction Code for Blind Quantum Computation

  • Qiang ZhaoEmail author
  • Qiong Li
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 157)

Abstract

The universal blind quantum computation protocol allows a client to delegate quantum computation to a remote server, and keep information private. Since the qubit errors are inevitable in any physical implementation, quantum error correction codes are needed for fault-tolerant blind quantum computation. In this paper, a quantum error correction code preparation protocol is proposed based on remote blind qubit state preparation (RBSP). The code is encoded on the brickwork state for fault-tolerant blind quantum computation. The protocol only requires client emitting weak coherent pulses, which frees client from dependence on quantum memory and quantum computing.

Keywords

Universal blind quantum computation Quantum error correction Remote blind qubit state preparation Brickwork state 

Notes

Acknowledgements

This work is supported by the Space Science and Technology Advance Research Joint Funds (Grant Number: 6141B06110105) and the National Natural Science Foundation of China (Grant Number: 61771168).

References

  1. 1.
    Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. (2008)Google Scholar
  2. 2.
    Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computations. arXiv preprint arXiv:1309.0005 (2013)
  3. 3.
    Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, 2009. FOCS’09, pp. 517–526. IEEEGoogle Scholar
  5. 5.
    Chien, C.H., Van Meter, R., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. ACM J. Emerg. Technol. Comput. Sys. 12, 9 (2015)Google Scholar
  6. 6.
    Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20) (2012)Google Scholar
  7. 7.
    Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint quant-ph/9705052 (1997)Google Scholar
  8. 8.
    Liu, M.M., Hu, Y.P.: Equational security of a lattice-based oblivious transfer protocol. J. Netw. Intell. 2(3), 231–249 (2017)Google Scholar
  9. 9.
    Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)Google Scholar
  10. 10.
    Preskill, J.: Fault-tolerant quantum computation. In: Introduction to Quantum Computation and Information, pp. 213–269. World Scientific (1998)Google Scholar
  11. 11.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22) (2001)CrossRefGoogle Scholar
  12. 12.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2) (2003)Google Scholar
  13. 13.
    Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, 1996, pp. 56–65. IEEEGoogle Scholar
  14. 14.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493 (1995)CrossRefGoogle Scholar
  15. 15.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sun, Y., Zheng, W.: An identity-based ring signcryption scheme in ideal lattice. J. Netw. Intell. 3(3), 152–161 (2018)MathSciNetGoogle Scholar
  18. 18.
    Zhao, Q., Li, Q.: Blind Quantum Computation with Two Decoy States. Springer International Publishing (2017)Google Scholar
  19. 19.
    Zhao, Q., Li, Q.: Finite-data-size study on practical universal blind quantum computation. Quantum Inf. Process. 17(7), 171 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations