Advertisement

A Load Economic Dispatch Based on Ion Motion Optimization Algorithm

  • Trong-The Nguyen
  • Mei-Jin Wang
  • Jeng-Shyang PanEmail author
  • Thi-kien Dao
  • Truong-Giang Ngo
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 157)

Abstract

This paper presents a new approach for dispatch generating powers of thermal plants based on ion motion optimization algorithm (IMA). Electrical power systems are determined by optimization in power balancing, transporting loss, and generating capacity. The scheduling power generating units for stabilizing different dynamic responses of the control power system are mathematically modeled for the objective function. Economic load dispatch (ELD) gains as the objective function is optimized by applying IMA. In the experimental section, several cases of different units of thermal plants are used to test the performance of the proposed approach. The preliminary results are compared with the other methods in the literature shows that the proposed plan offers higher effect performance.

Keywords

Ion motion optimization Electric power generating plant outputs Economic load dispatch 

References

  1. 1.
    Tsai, C.-F., Dao, T.-K., Pan, T.-S., Nguyen, T.-T., Chang, J.-F.: Parallel bat algorithm applied to the economic load dispatch problem. J. Internet Technol. 17 (2016).  https://doi.org/10.6138/JIT.2016.17.4.20141014c
  2. 2.
    Al-Sumait, J.S., Sykulski, J.K., Al-Othman, A.K.: Solution of different types of economic load dispatch problems using a pattern search method. Electr. Power Compon. Syst. 36, 250–265 (2008).  https://doi.org/10.1080/15325000701603892CrossRefGoogle Scholar
  3. 3.
    Dao, T., Pan, T., Nguyen, T., Chu, S.: Evolved bat algorithm for solving the economic load dispatch problem. In: Advances in Intelligent Systems and Computing, pp. 109–119 (2015).  https://doi.org/10.1007/978-3-319-12286-1_12Google Scholar
  4. 4.
    Vajda, S., Dantzig, G.B.: Linear programming and extensions. Math. Gaz. (2007).  https://doi.org/10.2307/3612922Google Scholar
  5. 5.
    Nguyen, T.-T., Pan, J.-S., Chu, S.-C., Roddick, J.F., Dao, T.-K.: Optimization localization in wireless sensor network based on multi-objective firefly algorithm. J. Netw. Intell. 1, 130–138 (2016)Google Scholar
  6. 6.
    Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. (2005)Google Scholar
  7. 7.
    Soliman, S.A.-H., Mantawy, A.-A.H.: Modern Optimization Techniques with Applications in Electric Power Systems (2012).  https://doi.org/10.1007/978-1-4614-1752-1zbMATHCrossRefGoogle Scholar
  8. 8.
    Nguyen, T.-T., Pan, J.-S., Wu, T.-Y., Dao, T.-K., Nguyen, T.-D.: Node coverage optimization strategy based on ions motion optimization. J. Netw. Intell. 4, 1–9 (2019)Google Scholar
  9. 9.
    Xue, X., Ren, A.: An evolutionary algorithm based ontology alignment extracting technology. J. Netw. Intell. 2, 205–212 (2017)Google Scholar
  10. 10.
    Sun, J., Palade, V., Wu, X.J., Fang, W., Wang, Z.: Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization. IEEE Trans. Ind. Informatics. 10, 222–232 (2014).  https://doi.org/10.1109/TII.2013.2267392CrossRefGoogle Scholar
  11. 11.
    Chiang, C.L.: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst. 20, 1690–1699 (2005).  https://doi.org/10.1109/TPWRS.2005.857924CrossRefGoogle Scholar
  12. 12.
    Suppapitnarm, A., Seffen, K.A., Parks, G.T., Clarkson, P.J.: Simulated annealing algorithm for multiobjective optimization. Eng. Optim. (2000).  https://doi.org/10.1080/03052150008940911CrossRefGoogle Scholar
  13. 13.
    Du, K.L.: Clustering: a neural network approach. Neural Netw. (2010).  https://doi.org/10.1016/j.neunet.2009.08.007zbMATHCrossRefGoogle Scholar
  14. 14.
    Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional clustering (2014).  https://doi.org/10.1016/j.swevo.2013.11.003CrossRefGoogle Scholar
  15. 15.
    Javidya, B., Hatamloua, A., Mirjalili, S.: Ions motion algorithm for solving optimization problems. Appl. Soft Comput. J. 32, 72–79 (2015). http://dx.doi.org/10.1016/j.asoc.2015.03.035CrossRefGoogle Scholar
  16. 16.
    Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic emissions load dispatch problem (2011).  https://doi.org/10.1155/2011/523806MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Trong-The Nguyen
    • 1
    • 2
  • Mei-Jin Wang
    • 1
  • Jeng-Shyang Pan
    • 1
    Email author
  • Thi-kien Dao
    • 2
  • Truong-Giang Ngo
    • 2
  1. 1.Fujian Provincial Key Laboratory of Big Data Mining and ApplicationsFujian University of TechnologyFuzhouChina
  2. 2.Department of Information TechnologyHaiphong Private UniversityHaiphongVietnam

Personalised recommendations