Skip to main content

Diversity and Functional Importance of Phytoplasma Membrane Proteins

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - III

Abstract

Phytoplasmas are wall-less prokaryotes, associated with hundreds of severe crop diseases worldwide. They inhabit phloem elements and are transmitted by insects of a few hemipteran families. In absence of a cell wall, phytoplasma membrane proteins are in direct contact with insect and plant hosts. The most abundant on their pathogen cells are the immunodominant membrane proteins (IDPs), which have been characterized in several phytoplasma strains, but also other membrane protein families, like variable membrane proteins (Vmps), adhesins, AAA + ATPases, and several transporters, are worth to mention for interactions with hosts and pathogen adaptation to different environments and as molecular markers useful for strain genotyping. Indeed, many of these membrane proteins are under positive selection pressure, and therefore highly variable among the different phytoplasma strains. A review and a schematic summary of the salient literature on phytoplasma membrane proteins are presented. The focuses were the variability of their gene sequences and the molecular characterization of pathogen strains and their functional roles in mediating interactions with plants and insects and in the perception and adaptation to different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C (2014) RNA-Seq profile of “flavescence dorée” phytoplasma in grapevine. BMC Genomics 15, 1088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Ghaithi AG, Al-Subhi AM, Al-Mahmooli IH, Al-Sadi AM (2018) Genetic analysis of ‘Candidatus Phytoplasma aurantifolia’ associated with witches’ broom on acid lime trees. PeerJ 5, e4480.

    Article  CAS  Google Scholar 

  • Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X, (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology 73, 4001–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arricau-Bouvery N, Duret S, Dubrana M-P, Batailler B, Desqué D, Béven L, Danet J-L, Monticone M, Bosco D, Malembic-Maher S, Foissac X (2018) Variable membrane protein A of “flavescence dorée” phytoplasma binds the midgut perimicrovillar membrane of Euscelidius variegatus and promotes adhesion to its epithelial cells. Applied and Environmental Microbiology 84, e02487–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atanasova B, Jakovljević M, Spasov D, Jović J, Mitrović M, Toševski I, Cvrković T (2015) The molecular epidemiology of “bois noir” grapevine yellows caused by ‘Candidatus Phytoplasma solani’ in the Republic of Macedonia. European Journal of Plant Pathology 142, 759–770.

    Article  Google Scholar 

  • Bai X, Correa VR, Toruño TY, Ammar E-D, Kamoun S, Hogenhout SA (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions 22, 18–30.

    Article  CAS  PubMed  Google Scholar 

  • Barbara DJ, Davies DL, Clark MF, Morton A (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Berg M, Davies DL, Clark MF, Vetten HJ, Maier G, Marcone C, Seemüller E (1999) Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology 145, 1937–1943.

    Article  CAS  PubMed  Google Scholar 

  • Blomquist CL, Barbara DJ, Davies DL, Clark MF, Kirkpatrick BC (2001) An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147, 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Boonrod K, Munteanu B, Jarausch B, Jarausch W, Krczal G (2012) An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Molecular Plant-Microbe Interactions 25, 889–895.

    Article  CAS  PubMed  Google Scholar 

  • Bosco D, D’Amelio R (2010) Transmission specificity and competition of multiple phytoplasmas in the insect vector. In: Phytoplasmas: Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CABI, Wallingford, United Kingdom, 293–308 pp.

    Google Scholar 

  • Cimerman A, Pacifico D, Salar P, Marzachì C, Foissac X (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied and Environmental Microbiology 75, 2951–2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danet J-L, Bonnet P, Jarausch W, Carraro L, Skoric D, Labonne G, Foissac X (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bulletin of Insectology 60, 339–340.

    Google Scholar 

  • Danet J-L, Balakishiyeva G, Cimerman A, Sauvion N, Marie-Jeanne V, Labonne G, Lavina A, Batlle A, Krizanac I, Skoric D, Ermacora P, Ulubas Serçe C, Caglayan K, Jarausch W, Foissac X (2011) Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology 157, 438–450.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson M, Hodgetts J (2013) PCR analysis of phytoplasmas based on the secA gene. In: Phytoplasma. Methods in Molecular Biology, vol. 938, Eds Dickinson M, Hodgetts J. Humana Press, Totowa, New Jersey, United States of America, 205–215 pp.

    Google Scholar 

  • Fabre A, Danet J-L, Foissac X (2011) The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 472, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Fleury B, Bergonier D, Berthelot X, Peterhans E, Frey J, Vilei EM (2002) Characterization of P40, a cytadhesin of Mycoplasma agalactiae. Infection and Immunity 70, 5612–5621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foissac X, Danet J-L, Malembic-Maher S, Salar P, Šafářová D, Válová P, Navrátil M (2013) Tuf and secY PCR amplification and genotyping of phytoplasmas. In: Phytoplasma. Methods in Molecular Biology, vol 938. Eds Dickinson M, Hodgetts J. Humana Press, Totowa, New Jersey, United States of America, 189–204 pp.

    Google Scholar 

  • Galetto L, Fletcher J, Bosco D, Turina M, Wayadande A, Marzachì C (2008) Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, chrysanthemum yellows isolate. Canadian Journal of Microbiology 54, 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. Plos One 6, e22571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galetto L, Rashidi M, Yamchi A, Veratti F, Marzachì C (2014) In vitro expression of phytoplasma immunodominant membrane proteins. In: Phytoplasmas and Phytoplasma Disease Management: How to Reduce their Economic Impact. Ed Bertaccini A. IPWG - International Phytoplasmologist Working Group, Bologna, Italy, 272–279 pp.

    Google Scholar 

  • Galetto L, Abbà S, Rossi M, Vallino M, Pesando M, Arricau-Bouvery N, Dubrana MP, Chitarra W, Pegoraro M, Bosco D, Marzachì C (2018) Two phytoplasmas elicit different responses in the insect vector Euscelidius variegatus Kirschbaum. Infection and Immunity 86, e00042–18.

    Google Scholar 

  • Galetto L, Vallino M, Rashidi M, Marzachì C (2019) Immunofluorescence assay to study early events of vector salivary gland colonization by phytoplasmas. In: Phytoplasma - Methods and Protocols. Eds Musetti R, Pagliari L. Springer Science+Business Media, New York, United States of America, 307–317 pp.

    Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology 58, 1826–1837.

    Article  CAS  PubMed  Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of United States of America, 106, 6416–6421.

    Google Scholar 

  • Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S (2009) In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058–2067.

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Kakizawa S, Oshima K (2013) New ex vivo reporter assay system reveals that σ factors of an unculturable pathogen control gene regulation involved in the host switching between insects and plants. MicrobiologyOpen 2, 553–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung H, Sawayanagi T, Tsuchizaki T, Miyata S, Ugaki M, Namba S (2001) Cloning and expression analysis of phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions 14, 1043–50.

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Namba S (2006a) Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology 14, 254–256.

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K, Jung H-Y, Suzuki S, Nishigawa H, Arashida R, Miyata S-I, Ugaki M, Kishino H, Namba S (2006b) Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. Journal of Bacteriology 188, 3424–3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung H-Y, Yamaji Y, Namba S (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiology Letters 293, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Konnerth A, Krczal G, Boonrod K (2016) Immunodominant membrane proteins of phytoplasmas. Microbiology 162, 1267–1273.

    Article  CAS  PubMed  Google Scholar 

  • Kostadinovska E, Quaglino F, Mitrev S, Casati P, Bulgari D, Bianco PA (2014) Multiple gene analyses identify distinct “bois noir” phytoplasma genotypes in the Republic of Macedonia. Phytopathologia Mediterranea 53, 491–501.

    CAS  Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal 2012, 1–25.

    Article  CAS  Google Scholar 

  • Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochimica et Biophysica Acta 1823, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Le Gall F, Bové J-M, Garnier M (1998) Engineering of a single-chain variable-fragment (scFv) antibody specific for the “stolbur” phytoplasma (mollicute) and its expression in Escherichia coli and tobacco plants. Applied and Environmental Microbiology 64, 4566–4572.

    Google Scholar 

  • Lee I-M, Gundersen-Rindal D, Bertaccini A (1998) Phytoplasma: ecology and genomic diversity. Phytopathology 88, 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic Mollicutes. Annual Review of Microbiology 54, 221–255.

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology 60, 2887–2897.

    Article  PubMed  Google Scholar 

  • MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology 80, 210–221.

    Article  CAS  Google Scholar 

  • Malembic-Maher S, Gall FL, Danet J-L, Borne FD de, Bové J-M, Garnier-Semancik M (2005) Transformation of tobacco plants for single-chain antibody expression via apoplastic and symplasmic routes, and analysis of their susceptibility to “stolbur” phytoplasma infection. Plant Science 168, 349–358.

    Article  CAS  Google Scholar 

  • Malembic-Maher S, Desqué D, Khalil D, Salar P, Danet J-L, Bergey B, Duret S, Beven L, Arricau-Bouvery N, Jović L, Krnjajić S, Angelini E, Filippin L, Ember I, Kölber M, Della Bartola M, Materazzi A, Lang F, Jarausch B, Maixner M, Foissac X (2017) When a palearctic bacterium meets a nearctic insect vector: genetic and ecological insights into the emergence of the grapevine “flavescence dorée” epidemics in Europe. IOBC-WPRS Meeting, 15–20 October, Riva Del Garda (Verona), Italy, 211–213.

    Google Scholar 

  • Marcone C (2014) Molecular biology and pathogenicity of phytoplasmas. Annals of Applied Biology 165, 199–221.

    Article  CAS  Google Scholar 

  • Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology 4, 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Murolo S, Romanazzi G (2015) In-vineyard population structure of ‘Candidatus Phytoplasma solani’ using multilocus sequence typing analysis. Infection, Genetics and Evolution 31, 221–230.

    Article  PubMed  Google Scholar 

  • Neriya Y, Sugawara K, Maejima K, Hashimoto M, Komatsu K, Minato N, Miura C, Kakizawa S, Yamaji Y, Oshima K, Namba S (2011) Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiology Letters 324, 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Neriya Y, Maejima K, Nijo T, Tomomitsu T, Yusa A, Himeno M, Netsu O, Hamamoto H, Oshima K, Namba S (2014) Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiology Letters 361, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. Plos One 6, e23242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology 4, 230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacifico D, Galetto L, Rashidi M, Abbà S, Palmano S, Firrao G, Bosco D, Marzachì C (2015) Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Applied and Environmental Microbiology 81, 2591–2602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierro R, Passera A, Panattoni A, Casati P, Luvisi A, Rizzo D, Bianco PA, Quaglino F, Materazzi A (2018) Molecular typing of “bois noir” phytoplasma strains in the Chianti Classico area (Tuscany, Central Italy) and their association with symptom severity in Vitis vinifera Sangiovese. Phytopathology 108, 362–373.

    Article  CAS  PubMed  Google Scholar 

  • Plavec J, Križanac I, Budinšćak Ž, Škorić D, Šeruga-Musić M (2015) A case study of FD and BN phytoplasma variability in Croatia: multigene sequence analysis approach. European Journal of Plant Pathology 142, 591–601.

    Article  Google Scholar 

  • Plavec J, Budinšćak Ž, Križanac I, Škorić D, Foissac X, Šeruga-Musić M (2019) Multi-locus sequence typing reveals the presence of three distinct “flavescence dorée” phytoplasma genetic clusters in Croatian vineyards. Plant Pathology 68, 18–30.

    Article  CAS  Google Scholar 

  • Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Molino Lova M, Alma A, Bianco PA (2015) ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’ broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology 15, 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rashidi M, Galetto L, Bosco D, Bulgarelli A, Vallino M, Veratti F, Marzachì C (2015) Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiology 15, 193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renaudin J, Béven L, Batailler B, Duret S, Desqué D, Arricau-Bouvery N, Malembic-Maher S, Foissac X (2015) Heterologous expression and processing of the “flavescence dorée” phytoplasma variable membrane protein VmpA in Spiroplasma citri. BMC Microbiology 15, 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seemüller E, Kampmann M, Kiss E, Schneider B (2011) HflB gene-based phytopathogenic classification of ‘Candidatus Phytoplasma mali’ strains and evidence that strain composition determines virulence in multiply infected apple trees. Molecular Plant-Microbe Interactions 24, 1258–1266.

    Article  CAS  PubMed  Google Scholar 

  • Seemüller E, Sule S, Kube M, Jelkmann W, Schneider B (2013) The AAA+ ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’: phylogenetic diversity, membrane topology, and relationship to strain virulence. Molecular Plant-Microbe Interactions 26, 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Seemüller E, Zikeli K, Furch ACU, Wensing A, Jelkmann W (2018) Virulence of ‘Candidatus Phytoplasma mali’ strains is closely linked to conserved substitutions in AAA+ ATPase AP460 and their supposed effect on enzyme function. European Journal of Plant Pathology 150, 701–711.

    Article  CAS  Google Scholar 

  • Seruga-Musić M, Duc Nguyen H, Cerni S, Mamula Ð, Oshima K, Skorić D (2014) Multilocus sequence analysis of ‘Candidatus Phytoplasma asteris’ strain and the genome analysis of Turnip mosaic virus co-infecting oilseed rape. Journal of Applied Microbiology 117, 774–785.

    Article  PubMed  CAS  Google Scholar 

  • Shahryari F, Safarnejad MR, Shams-Bakhsh M, Jouzani GRS (2010) Toward immunomodulation of witches’ broom disease of lime (WBDL) by targeting immunodominant membrane protein (IMP) of ‘Candidatus Phytoplasma aurantifolia’. Communications in Agricultural and Applied Biological Sciences 75, 789–795.

    Google Scholar 

  • Shahryari F, Safarnejad MR, Shams-Bakhsh M, Schillberg S, Nölke G (2013) Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of ‘Candidatus Phytoplasma aurantifolia’. Journal of Microbiology and Biotechnology 23, 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  • Siampour M, Galetto L, Bosco D, Izadpanah K, Marzachì C (2011) In vitro interactions between immunodominant membrane protein of lime witches’ broom phytoplasma and leafhopper vector proteins. Bulletin of Insectology 64(Supplement), S149-S150.

    Google Scholar 

  • Siampour M, Izadpanah K, Galetto L, Salehi M, Marzachí C (2013) Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology 62, 452–459.

    Article  CAS  Google Scholar 

  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology 49, 175–195.

    Article  CAS  PubMed  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the mscL gene, protein, and activities. Annual Review of Physiology 59, 633–657.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences, United States of America 103, 4252–4257.

    Article  CAS  Google Scholar 

  • Tomkins M, Kliot A, Marée AF, Hogenhout SA (2018) A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current Opinion in Plant Biology 44, 39–48.

    Article  PubMed  Google Scholar 

  • Toruño TY, Seruga-Musić M, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts: PMUs are extrachromosomal elements. Molecular Microbiology 77, 1406–1415.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–111.

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Yeh KW, Lin CP (1998) An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144, 1257–1262.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossi, M., Samarzija, I., Šeruga-Musić, M., Galetto, L. (2019). Diversity and Functional Importance of Phytoplasma Membrane Proteins. In: Bertaccini, A., Oshima, K., Kube, M., Rao, G. (eds) Phytoplasmas: Plant Pathogenic Bacteria - III. Springer, Singapore. https://doi.org/10.1007/978-981-13-9632-8_5

Download citation

Publish with us

Policies and ethics