Skip to main content

The Grid Connection of Linear Machine-Based Wave Power Generators

  • Chapter
  • First Online:
Advanced Linear Machines and Drive Systems

Abstract

The ocean is a gigantic source of renewable and predictable green energy. The ocean alone can provide around 10 TW of energy to the total world energy demand. The ocean energy, in general, and the wave energy, in particular, has gained the attention of researchers because of its huge potential in the past few decades. In most cases, the output power of a single wave energy conversion (WEC) device is low, and these devices need to be connected in a wave farm (WF), like the wind farms, to supply the local load or to interface with the utility grid. This chapter gives a detailed insight into the grid integration of the wave farms. The output power characteristics of a single machine are first analyzed for the later analysis of the combination of multiple machines in a WF. The layout of the WFs is described in this chapter. The WF output may be integrated with the utility grids of varying strengths in terms of its short circuit ratios and impedance angles. Various transmission topologies for connection of the WFs with the offshore utility grids are also discussed. The challenges resulting from the grid intergration, such as the flicker level, the voltage fluctuations, the low voltage ride through capability and the voltage and current harmonic distortions are discussed along with the possible solutions to overcome these difficulties. The recent development in the wave energy sector of Australia is also presented at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed T, Muttaqi KM, Agalgaonkar AP (2012) Climate change impacts on electricity demand in the State of New South Wales, Australia. Appl Energy 98:376–383

    Article  Google Scholar 

  2. Abas N, Kalair A, Khan N, Kalair AR (2017) Review of GHG emissions in Pakistan compared to SAARC countries. Renew Sustain Energy Rev 80:990–1016

    Article  Google Scholar 

  3. IEA (2018) CO2 emissions: an overview

    Google Scholar 

  4. REN21 (2018) Renewables global status report

    Google Scholar 

  5. Haidar AMA, Muttaqi KM, Sutanto D (2014) Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: a review. Energy Convers Manag 86:689–700

    Article  Google Scholar 

  6. Zou K, Agalgaonkar AP, Muttaqi KM, Perera S (2012) Distribution system planning with incorporating DG reactive capability and system uncertainties. IEEE Trans Sustain Energy 3:112–123

    Article  ADS  Google Scholar 

  7. Kashem MA, Ganapathy V, Jasmon GB (2000) Network reconfiguration for enhancement of voltage stability in distribution networks. IEE Proc Gener Transm Distrib 147:171

    Article  Google Scholar 

  8. Kashem MA, Ledwich G (2005) Multiple distributed generators for distribution feeder voltage support. IEEE Trans Energy Convers 20:676–684

    Article  ADS  Google Scholar 

  9. WAVE DEVELOPERS. http://www.emec.org.uk/marine-energy/wave-developers/. Accessed 9 Mar 2019

  10. Islam MR, Guo Y, Zhu J (2014) A review of offshore wind turbine nacelle: technical challenges, and research and developmental trends. Renew Sustain Energy Rev 33:161–176

    Article  Google Scholar 

  11. Muljadi E, Yu Y-H (2015) Review of marine hydrokinetic power generation and power plant. Electr Power Compon Syst 43:1422–1433

    Article  Google Scholar 

  12. Jagadeesh Kumar V, Biju BN, Koola PM, Ravindran M (1996) Microcontroller based instrumentation for control and PC based data acquisition system for a prototype wave energy plant. In: Oceans 1996 MTS/IEEE conference proceedings. The coastal ocean-prospects for the 21st century, Fort Lauderdale, FL, USA. IEEE, pp 1188–1192

    Google Scholar 

  13. Vining J, Lipo TA, Venkataramanan G (2011) Experimental evaluation of a doubly-fed linear generator for ocean wave energy applications. In: 2011 IEEE energy conversion congress and exposition, Phoenix, AZ, USA. IEEE, pp 4115–4122

    Google Scholar 

  14. Khan N, Kalair A, Abas N, Haider A (2017) Review of ocean tidal, wave and thermal energy technologies. Renew Sustain Energy Rev 72:590–604

    Article  Google Scholar 

  15. Tedeschi E, Santos-Mugica M (2014) Modeling and control of a wave energy farm including energy storage for power quality enhancement: the bimep case study. IEEE Trans Power Syst 29:1489–1497

    Article  ADS  Google Scholar 

  16. Khan J, Leon D, Moshref A, Arabi S, Bhuyan G (2013) Network security assessments for integrating large-scale tidal current and ocean wave resources into future electrical grids. Proc IEEE 101:956–977

    Article  Google Scholar 

  17. Blavette A, O’Sullivan DL, Alcorn R, Lewis TW, Egan MG (2014) Impact of a medium-size wave farm on grids of different strength levels. IEEE Trans Power Syst 29:917–923

    Article  ADS  Google Scholar 

  18. Wu F, Zhang XP, Ju P, Sterling MJH (2008) Modeling and control of AWS-based wave energy conversion system integrated into power grid. IEEE Trans Power Syst 23:1196–1204

    Article  ADS  Google Scholar 

  19. Farrok O, Islam MR, Sheikh MRI (2016) Analysis of the oceanic wave dynamics for generation of electrical energy using a linear generator. J Energy 2016:1–14

    Article  Google Scholar 

  20. Farrok O, Islam MR, Sheikh MRI, Guo YG, Zhu JG, Xu W (2015) Analysis and design of a novel linear generator for harvesting oceanic wave energy. In: 2015 IEEE international conference on applied superconductivity and electromagnetic devices, Shanghai, China. IEEE, pp 272–273

    Google Scholar 

  21. Seo S-W, Jang G-H, Kim J-M, Choi J-Y (2018) Characteristic analysis and experimental verification for a double-sided permanent magnet linear synchronous generator according to magnetization array. IEEE Trans Appl Supercond 28:1–4

    Google Scholar 

  22. Kim CW, Koo MM, Kim JM, Ahn JH, Hong K, Choi JY (2018) Core loss analysis of permanent magnet synchronous generator with slotless stator. IEEE Trans Appl Supercond 28:3–6

    Article  Google Scholar 

  23. Farrok O, Islam MR, Sheikh MRI, Guo YG, Zhu JG (2017) Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans Magn 53:1–4

    Article  Google Scholar 

  24. Pan JF, Li Q, Wu X, Cheung N, Qiu L (2019) Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int J Electr Power Energy Syst 106:33–44

    Article  Google Scholar 

  25. Oh YJ, Park JS, Hyon BJ, Lee J (2018) Novel control strategy of wave energy converter using linear permanent magnet synchronous generator. IEEE Trans Appl Supercond 28:1–5

    Google Scholar 

  26. Trapanese M, Boscaino V, Cipriani G, Curto D, Dio V Di, Franzitta V (2019) A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans Ind Electron 66:4934–4944

    Article  Google Scholar 

  27. Rao KSR, Sunderan T, Adiris MR (2017) Performance and design optimization of two model based wave energy permanent magnet linear generators. Renew Energy 101:196–203

    Article  Google Scholar 

  28. Musolino A, Raugi M, Rizzo R, Sani L (2018) A semi-anaytical model for the analysis of a permanent magnet tubular linear generator. IEEE Trans Ind Appl 54:204–212

    Article  Google Scholar 

  29. Li W, Chau KT, Ching TW, Liu C (2018) A phase-decoupled flux-reversal linear generator for low-speed oscillatory energy conversion using impedance matching strategy. IEEE Trans Ind Electron 65:7590–7599

    Article  Google Scholar 

  30. Wahyudie A, Susilo TB, Jehangir SS (2018) Design of a 100 W mini permanent magnet linear generator for wave energy converter system. In: 5th international conference on renewable energy: generation and applications, ICREGA 2018, Al Ain, United Arab Emirates. pp 223–226

    Google Scholar 

  31. Xia T, Yu H, Guo R, Liu X (2018) Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans Appl Supercond 28:1–5

    Google Scholar 

  32. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu JG (2018) A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans Ind Electron 65:7600–7608

    Article  Google Scholar 

  33. Farrok O, Islam MR, Islam Sheikh MR, Guo Y, Zhu J, Xu W (2016) A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans Appl Supercond 26:1–5

    Article  Google Scholar 

  34. Farrok O, Islam MR, Islam Sheikh MR, Guo Y, Zhu J, Lei G (2018) Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Trans Ind Appl 54:6005–6014

    Article  Google Scholar 

  35. Islam MR, Roy NK, Rahman S (eds) (2018) Renewable energy and the environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-7287-1

    Google Scholar 

  36. Farrok O, Islam MR (2018) Advanced electrical machines for oceanic wave energy conversion. In: Islam MR, Roy NK, Rahman S (eds) Renewable energy and the environment. Springer, Singapore, pp 115–141

    Google Scholar 

  37. Molla S, Farrok O, Muttaqi KM, Islam MR (2018) Design of a direct drive linear generator with high flux density magnetic cores for oceanic wave energy conversion. In: 2018 IEEE international conference on applied superconductivity and electromagnetic devices, Tianjin, China. IEEE, pp 1–2

    Google Scholar 

  38. Molla S, Farrok O, Islam MR, Muttaqi KM (2019) Analysis and design of a high performance linear generator with high grade magnetic cores and high temperature superconducting coils for oceanic wave energy conversion. IEEE Trans Appl Supercond 29:1–5

    Article  Google Scholar 

  39. Aghaei J, Muttaqi KM, Azizivahed A, Gitizadeh M (2014) Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm. Energy 65:398–411

    Article  Google Scholar 

  40. Farrok O, Islam MR, Guo Y, Zhu J, Xu W (2018) A novel design procedure for designing linear generators. IEEE Trans Ind Electron 65:1846–1854

    Article  Google Scholar 

  41. Islam MR, Sheikh MRI (2015) Fuzzy logic based an improved controller for wave energy conversion systems. In: 2015 international conference on electrical engineering and information communication technology, Dhaka, Bangladesh. IEEE, pp 1–6

    Google Scholar 

  42. Farrok O, Islam MR, Sheikh MRI, Xu W (2016) A new optimization methodology of the linear generator for wave energy conversion systems. In: 2016 IEEE international conference on industrial technology, Taipei, Taiwan. IEEE, pp 1412–1417

    Google Scholar 

  43. Faiz J, Nematsaberi A (2017) Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview. IET Renew Power Gener 11:1163–1176

    Article  Google Scholar 

  44. Dang TT, François P, Prévond L, Ben Ahmed H (2010) Theoretical and experimental results of tubular linear induction generator for stirling cogenerator system. In: 19th international conference on electrical machines, ICEM 2010, Rome, Italy. pp 1–7

    Google Scholar 

  45. Dang TT, Ruellan M, Prévond L, Ben Ahmed H, Multon B (2015) Sizing optimization of tubular linear induction generator and its possible application in high acceleration free-piston stirling microcogeneration. IEEE Trans Ind Appl 51:3716–3733

    Article  Google Scholar 

  46. François P, Burrel IG, Ben Ahmed H, Prévond L, Multon B (2007) 3D analytical model for a tubular linear induction generator in a stirling cogeneration system. In: Proceedings of the IEEE international electric machines & drives conference, IEMDC 2007, Antalya, Turkey. vol 1, pp 392–397

    Google Scholar 

  47. Vining J, Lipo TA, Venkataramanan G (2010) Self-synchronous control of doubly-fed linear generators for ocean wave energy applications. In: Proceedings of the 2010 IEEE energy conversion congress and exposition, ECCE 2010, Atlanta, GA, USA. pp 2386–2391

    Google Scholar 

  48. Aliabadi MH, Hosseinian SH, Moghani SJ, Abedi M (2013) Multisided linear induction generator, analytical modeling, 3-D finite element analysis and experimental test. Elektron Elektrotech 19:8–14

    Google Scholar 

  49. Di Dio V, Miceli R, Trapanese M (2007) The use of sea waves for generation of electrical energy: a linear tubular asynchronous electrical generator. In: Oceans 2007, Vancouver, BC, Canada. IEEE, pp 1–4

    Google Scholar 

  50. Ramirez D, Bartolome JP, Martinez S, Herrero LC, Blanco M (2015) Emulation of an OWC ocean energy plant with PMSG and irregular wave model. IEEE Trans Sustain Energy 6:1515–1523

    Article  ADS  Google Scholar 

  51. Kashem MA, Ledwich G (2007) Energy requirement for distributed energy resources with battery energy storage for voltage support in three-phase distribution lines. Electr Power Syst Res 77:10–23

    Article  Google Scholar 

  52. Armstrong S, Mollaghan D, Alcorn R (2014) Effect of wave farm aggregation on power system stability. In: 2014 IEEE 5th international symposium on power electronics for distributed generation systems, PEDG 2014, Galway, Ireland. pp 1–6

    Google Scholar 

  53. Armstrong S, Cotilla-Sanchez E, Kovaltchouk T (2015) Assessing the impact of the grid-connected pacific marine energy center wave farm. IEEE J Emerg Sel Top Power Electron 3:1011–1020

    Article  Google Scholar 

  54. O’Sullivan DL, Dalton G, Lewis AW (2010) Regulatory, technical and financial challenges in the grid connection of wave energy devices. Renew Power Gener IET 4:555–567

    Article  Google Scholar 

  55. Babarit A (2010) Impact of long separating distances on the energy production of two interacting wave energy converters. Ocean Eng 37:718–729

    Article  Google Scholar 

  56. Falnes J (2002) Ocean waves and oscillating systems: linear interactions including wave-energy extraction. Cambridge University Press. https://doi.org/10.1017/CBO9780511754630

  57. Jones CE, Finney SJ, Parry CS (2011) Regulating DC link voltage fluctuations on a grid connected wave power system using energy storage. In: IET renewable power generation conference, RPG 2011, Edinburgh, UK. p 121

    Google Scholar 

  58. Zhao X, Yan Z, Zhang XP (2016) A wind-wave farm system with self-energy storage and smoothed power output. IEEE Access 4:8634–8642

    Article  Google Scholar 

  59. Bonar PAJ, Bryden IG, Borthwick AGL (2015) Social and ecological impacts of marine energy development. Renew Sustain Energy Rev 47:486–495

    Article  Google Scholar 

  60. Olivares CH, Holmes B, O’Hagan AM, et al (2011) First output of the SOWFIA project: streamlining of ocean wave farms impact assessment. In: Ocean 2011, Spain. IEEE, pp 1–9

    Google Scholar 

  61. De Andrés AD, Guanche R, Meneses L, Vidal C, Losada IJ (2014) Factors that influence array layout on wave energy farms. Ocean Eng 82:32–41

    Article  Google Scholar 

  62. Sjolte J, Tjensvoll G, Molinas M (2012) All-electric wave energy converter array with energy storage and reactive power compensation for improved power quality. In: 2012 IEEE energy conversion congress and exposition, ECCE 2012, Raleigh, NC, USA. pp 954–961

    Google Scholar 

  63. Villalba I, Blanco M, Pérez-Díaz JI, Fernández D, Díaz F, Lafoz M (2019) Wave farms grid code compliance in isolated small power systems. IET Renew Power Gener 13:171–179

    Article  Google Scholar 

  64. Garcia-Rosa PB, Bacelli G, Ringwood JV (2015) Control-informed optimal array layout for wave farms. IEEE Trans Sustain Energy 6:575–582

    Article  ADS  Google Scholar 

  65. Moarefdoost MM, Snyder LV, Alnajjab B (2017) Layouts for ocean wave energy farms: models, properties, and optimization. Omega (United Kingdom) 66:185–194

    Google Scholar 

  66. Sharkey F, Conlon MF, Gaughan K (2011) Investigation of wave farm electrical network configurations. In: World renewable energy congress, Sweden, pp 1–8

    Google Scholar 

  67. Ahmed T, Nishida K, Nakaoka M (2010) The potential for grid power integration of offshore ocean wave energy in the UK. In: 2010 international power electronics conference - ECCE Asia -, IPEC 2010, Sapporo, Japan. pp 3204–3211

    Google Scholar 

  68. Lu SY, Wang L, Lo TM, Prokhorov AV (2015) Integration of wind power and wave power generation systems using a DC microgrid. IEEE Trans Ind Appl 51:2753–2761

    Article  Google Scholar 

  69. Bazargan M (2007) Offshore substation. Power Eng 21:26

    Article  Google Scholar 

  70. Rahm M, Boström C, Svensson O, Grabbe M, Bülow F, Leijon M (2010) Offshore underwater substation for wave energy converter arrays. IET Renew Power Gener 4:602

    Article  Google Scholar 

  71. Ekstrom R, Apelfrojd S, Leijon M (2013) Experimental verifications of offshore marine substation for grid-connection of wave energy farm. In: 2013 3rd international conference on electric power and energy conversion systems, Istanbul, Turkey. IEEE, pp 1–6

    Google Scholar 

  72. Trilla L, Thiringer T, Sahlin S, Andersson T (2015) Wave energy park power quality impact and collection grid economic assessment. IET Renew Power Gener 9:368–378

    Article  Google Scholar 

  73. Alam MJE, Muttaqi KM, Sutanto D (2014) A novel approach for ramp-rate control of solar pv using energy storage to mitigate output fluctuations caused by cloud passing. IEEE Trans Energy Convers 29:507–518

    Article  Google Scholar 

  74. Blavette A, O’Sullivan DL, Lewis AW, Egan MG (2012) Impact of a wave farm on its local grid: voltage limits, flicker level and power fluctuations. In: 2012 ocean. Yeosu. IEEE, pp 1–9

    Google Scholar 

  75. Kovaltchouk T, Blavette A, Aubry J, Ben Ahmed H, Multon B (2016) Comparison between centralized and decentralized storage energy management for direct wave energy converter farm. IEEE Trans Energy Convers 31:1051–1058

    Article  ADS  Google Scholar 

  76. Gaughan K, Bannon E, Conlon M, Sharkey F, MacEnri J (2013) Resource-induced voltage flicker for wave energy converters – assessment tools. IET Renew Power Gener 7:623–630

    Article  Google Scholar 

  77. Olauson J, Ayob MN, Bergkvist M, Carpman N, Castellucci V, Goude A, Lingfors D, Waters R, Widn J (2016) Net load variability in Nordic countries with a highly or fully renewable power system. Nat Energy 1:16175

    Article  Google Scholar 

  78. Roy A, Auger F, Dupriez-Robin F, Bourguet S, Tran QT (2018) Electrical power supply of remote maritime areas: a review of hybrid systems based on marine renewable energies. Energies 11:1904

    Article  Google Scholar 

  79. El-bidairi KS, Nguyen HD, Jayasinghe SDG, Mahmoud TS, Penesis I, Island AF, Structure M (2018) Impact of tidal energy on battery sizing in standalone microgrids: a case study. In: 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe), Palermo, Italy. pp 1–6

    Google Scholar 

  80. Majidi Nezhad M, Groppi D, Rosa F, Piras G, Cumo F, Garcia DA (2018) Nearshore wave energy converters comparison and Mediterranean small island grid integration. Sustain Energy Technol Assessments 30:68–76

    Article  Google Scholar 

  81. Tissandier J, Babarit A, Clement AH (2008) Study of the smoothing effect on the power production in an array of SEAREV wave energy converters. In: Proceedings of the international offshore and polar engineering conference, Vancouver, Canada. vol 8, pp 374–381

    Google Scholar 

  82. Molinas M, Skjervheim O, Sørby B, Andreasen P, Lundberg S, Undeland T (2007) Power smoothing by aggregation of wave energy converters for minimizing electrical energy storage requirements. In: Proceedings of the 7th European Wave and tidal energy conference, pp 3–8

    Google Scholar 

  83. Kuschke M, Strunz K (2013) Transient cable overvoltage calculation and filter design: application to onshore converter station for hydrokinetic energy harvesting. IEEE Trans Power Deliv 28:1322–1329

    Article  Google Scholar 

  84. Alcorn R, Sullivan DO (2013) Electrical design for ocean wave and tidal energy systems. Electr Des Ocean Wave Tidal Energy Syst. https://doi.org/10.1049/pbrn017e

    Google Scholar 

  85. Thorburn K, Bernhoff H, Leijon M (2004) Wave energy transmission system concepts for linear generator arrays. Ocean Eng 31:1339–1349

    Article  Google Scholar 

  86. Kashem MA, Ganapathy V, Jasmon GB (1999) Network reconfiguration for load balancing in distribution networks. IEE Proc Gener Transm Distrib 146:563

    Article  Google Scholar 

  87. Zhang N, Sutanto D, Muttaqi KM (2016) A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system. Renew Sustain Energy Rev 56:388–401

    Article  Google Scholar 

  88. Submarine Cables. http://www.cablel.com/ckfinder/userfiles/files/Submarine.Cables.Brochure.pdf. Accessed 20 Feb 2019

  89. Ossentjuk E, Elink Sterk CJO, Strom van Leeuwen W (1966) Flicker-induced cardiac arrest in a patient with epilepsy. Electroencephalogr Clin Neurophysiol 20:257–259

    Article  Google Scholar 

  90. Blavette A, O’Sullivan DL, Lewis TW, Egan MG (2015) Dimensioning the equipment of a wave farm: energy storage and cables. IEEE Trans Ind Appl 51:2470–2478

    Article  Google Scholar 

  91. Alam MJE, Muttaqi KM, Sutanto D (2012) Distributed energy storage for mitigation of voltage-rise impact caused by rooftop solar PV. In: 2012 IEEE power and energy society general meeting, San Diego, CA, USA. IEEE, pp 1–8

    Google Scholar 

  92. Blavette A, O’Sullivan DL, Alcorn R, Egan MG, Lewis TW (2016) Simplified estimation of the flicker level induced by wave energy farms. IEEE Trans Sustain Energy 7:1216–1223

    Article  ADS  Google Scholar 

  93. Rajapakse G, Jayasinghe S, Fleming A, Negnevitsky M (2018) Grid integration and power smoothing of an oscillating water column wave energy converter. Energies 11:1871

    Article  Google Scholar 

  94. Mendis N, Muttaqi KM, Perera S (2014) Management of low- and high-frequency power components in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy storage. IEEE Trans Ind Appl 50:2258–2268

    Article  Google Scholar 

  95. Parwal A, Fregelius M, Temiz I, Göteman M, de Oliveira JG, Boström C, Leijon M (2018) Energy management for a grid-connected wave energy park through a hybrid energy storage system. Appl Energy 231:399–411

    Article  Google Scholar 

  96. Abdullah MA, Muttaqi KM, Sutanto D, Agalgaonkar AP (2015) An effective power dispatch control strategy to improve generation schedulability and supply reliability of a wind farm using a battery energy storage system. IEEE Trans Sustain Energy 6:1093–1102

    Article  ADS  Google Scholar 

  97. Kazmierkowski MP, Jasinski M (2011) Power electronic grid-interface for renewable ocean wave energy. In: Proceedings of the 2011 7th international conference-workshop compatibility and power electronics, CPE 2011, Tallinn, Estonia. pp 457–463

    Google Scholar 

  98. Santos-Mugica M, Tedeschi E, Ricci P, Molinas M, Martin JL (2011) Grid connection improvements by control strategy selection for wave energy converters. In: Proceedings of the international conference on renewable energy and power quality (ICREPQ 2011), Las Palmas de Gran Canaria, Spain. vol 1, pp 1–6

    Google Scholar 

  99. Ahmed T, Nishida K, Nakaoka M (2011) The commercial advancement of 16 MW offshore wave power generation technologies in the southwest of the UK. In: 8th international conference on power electronics - ECCE Asia, green world with power electron, ICPE 2011-ECCE Asia, pp 1476–1483

    Google Scholar 

  100. Ranamuka D, Agalgaonkar AP, Muttaqi KM (2014) Online voltage control in distribution systems with multiple voltage regulating devices. IEEE Trans Sustain Energy 5:617–628

    Article  ADS  Google Scholar 

  101. Santos-Mugica M, Robles E, Endegnanew AG, Tedeschi E, Giebhardt J (2014) Grid integration and power quality testing of marine energy converters: research activities in the MaRINET Project. In: 2014 9th international conference on ecological vehicles and renewable energies, EVER 2014, Monte-Carlo, Monaco. pp 1–9

    Google Scholar 

  102. Wang L, Vo QS, Prokhorov AV (2017) Dynamic stability analysis of a hybrid wave and photovoltaic power generation system integrated into a distribution power grid. IEEE Trans Sustain Energy 8:404–413

    Article  ADS  Google Scholar 

  103. Mendis N, Muttaqi KM, Perera S (2014) Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems. IEEE Trans Smart Grid 5:944–953

    Article  Google Scholar 

  104. Das B, Pal BC (2006) Voltage control performance of AWS connected for grid operation. IEEE Trans Energy Convers 21:353–361

    Article  ADS  Google Scholar 

  105. Lafoz M, Blanco M, Ramirez D (2011) Grid connection for wave power farms. In: Proceedings of the 13th European conference on power electronics and applications, EPE 2009, Birmingham, UK. pp 1–10

    Google Scholar 

  106. Haque ME, Negnevitsky M, Muttaqi KM (2010) A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator. IEEE Trans Ind Appl 46:331–339

    Article  Google Scholar 

  107. Hemer MA, Manasseh R, McInnes KL, Penesis I, Pitman T (2018) Perspectives on a way forward for ocean renewable energy in Australia. Renew Energy 127:733–745

    Article  Google Scholar 

  108. Ocean Energy. http://www.ga.gov.au/scientific-topics/energy/resources/other-renewable-energy-resources/ocean-energy#heading-5. Accessed 3 Nov 2018

  109. Hemer MA, Zieger S, Durrant T, O’Grady J, Hoeke RK, McInnes KL, Rosebrock U (2017) A revised assessment of Australia’s national wave energy resource. Renew Energy 114:85–107

    Article  Google Scholar 

  110. ARENA Projects. https://arena.gov.au/projects/?technology=ocean-energy&project-value-start=0&project-value-end=500000000. Accessed 3 Nov 2018

  111. Sally Adee This Renewable Energy Source Is Swell. https://spectrum.ieee.org/energy/renewables/this-renewable-energy-source-is-swell. Accessed 3 Nov 2018

  112. WHAT IS CETO. https://www.carnegiece.com/wave/what-is-ceto/. Accessed 3 Nov 2018

  113. Wave Swell Energy. http://waveswellenergy.com.au/technology/. Accessed 3 Nov 2018

  114. Powering our future with waves. http://www.bomborawave.com/mwave. Accessed 3 Nov 2018

  115. Turbine Demonstration Project. https://www.mako.energy/tamar-river-research-project. Accessed 3 Nov 2018

  116. SurgeDrive®. https://www.aquagen.com.au/technologies/surgedrive. Accessed 3 Nov 2018

  117. BioPower Systems. http://bps.energy/. Accessed 3 Nov 2018

  118. WAVE POWER ENGINEERING. http://wavepowerengineering.com/home/projects?t=fpp&lang=en-US. Accessed 3 Nov 2018

  119. Mendis N, Muttaqi KM, Perera S (2012) Active power management of a super capacitor-battery hybrid energy storage system for standalone operation of DFIG based wind turbines. In: 2012 IEEE industry applications society annual meeting, Las Vegas, NV, USA. IEEE, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safdar Rasool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasool, S., Islam, M.R., Muttaqi, K.M., Sutanto, D. (2019). The Grid Connection of Linear Machine-Based Wave Power Generators. In: Xu, W., Islam, M., Pucci, M. (eds) Advanced Linear Machines and Drive Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9616-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9616-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9615-1

  • Online ISBN: 978-981-13-9616-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics