Skip to main content

Speed Sensorless Control Strategy for LIM Based on Extended State Observer

  • Chapter
  • First Online:
Advanced Linear Machines and Drive Systems
  • 489 Accesses

Abstract

The speed sensorless control for the LIM drives could reduce the cost and improve the reliability, which have attracted many attentions of researchers. In this chapter, an improved systematic approach for speed estimation and controller design of LIM drives is proposed. The speed estimation method based on the extended state observer (ESO) is developed to improve the dynamic speed estimation response. In contrast to the conventional proportional-integral speed adaptive mechanism based only on the LIM electromagnetic model, this new speed estimation method incorporates both the electromagnetic and mechanical models such that it can estimate the LIM speed and load resistance at the same time. A new speed controller incorporating the disturbance observer based control (DOBC) algorithm is developed to strengthen the speed tracking ability and suppress the disturbance of load variation. Having fewer parameters, it brings great convenience to the drive system parameter setting and tuning. The performance of the proposed method is numerically simulated and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu W, Zhu JG, Zhang Y et al (2010) Equivalent circuits for single-sided linear induction motors. IEEE Trans Ind Appl 46:2410–2423. https://doi.org/10.1109/TIA.2010.2073434

    Article  Google Scholar 

  2. Zou J, Xu W, Yu X, et al (2017) Multistep model predictive control with current and voltage constraints for linear induction machine based urban transportation. IEEE Trans Veh Technol 66:10817. https://doi.org/10.1109/tvt.2017.2736533

    Article  Google Scholar 

  3. Cirrincione M, Accetta A, Pucci M, Vitale G (2013) MRAS speed observer for high-performance linear induction motor drives based on linear neural networks. IEEE Trans Power Electron 28:123–134. https://doi.org/10.1109/TPEL.2012.2200506

    Article  ADS  Google Scholar 

  4. Accetta A, Cirrincione M, Pucci M, Vitale G (2014) Neural sensorless control of linear induction motors by a full-order Luenberger observer considering the end effects. IEEE Trans Ind Appl 50:1891–1904. https://doi.org/10.1109/TIA.2013.2288429

    Article  Google Scholar 

  5. Ryu H-M, Ha J-I, Sul S-K (2000) A new sensorless thrust control of linear induction motor. In: Conference on IEEE industry applications conference (Cat. No.00CH37129), vol 3, pp 1655–1661

    Google Scholar 

  6. Caruana C, Asher GM, Sumner M (2005) Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions. IEEE Trans Ind Electron 53:225–238. https://doi.org/10.1109/TIE.2005.862257

    Article  Google Scholar 

  7. Leppanen VM, Luomi J (2005) Observer using low-frequency injection for sensorless induction motor control-parameter sensitivity analysis. IEEE Trans Ind Electron 53:216–224. https://doi.org/10.1109/TIE.2005.862293

    Article  Google Scholar 

  8. Alonge F, Cirrincione M, D’Ippolito F et al (2014) Descriptor-type Kalman filter and TLS EXIN speed estimate for sensorless control of a linear induction motor. IEEE Trans Ind Appl 50:3754–3766. https://doi.org/10.1109/TIA.2014.2316367

    Article  Google Scholar 

  9. Accetta A, Cirrincione M, Pucci M, Vitale G (2015) Closed-loop MRAS speed observer for linear induction motor drives. IEEE Trans Ind Appl 51:2279–2290. https://doi.org/10.1109/TIA.2014.2375377

    Article  Google Scholar 

  10. Liu P, Hung C-y, Chiu C-s, Lian K-y (2011) Sensorless linear induction motor speed tracking using fuzzy observers. IET Electr Power Appl 5:325–334. https://doi.org/10.1049/iet-epa.2010.0099

    Article  Google Scholar 

  11. Vaclavek P, Blaha P, Herman I (2013) AC drive observability analysis. IEEE Trans Ind Electron 60:3047–3059. https://doi.org/10.1109/TIE.2012.2203775

    Article  Google Scholar 

  12. Sun W, Liu X, Gao J et al (2016) Zero stator current frequency operation of speed-sensorless induction motor drives using stator input voltage error for speed estimation. IEEE Trans Ind Electron 63:1490–1498. https://doi.org/10.1109/TIE.2015.2493143

    Article  Google Scholar 

  13. Xu W, Sun G, Wen G et al (2012) Equivalent circuit derivation and performance analysis of a single-sided linear induction motor based on the winding function theory. IEEE Trans Veh Technol 61:1515–1525. https://doi.org/10.1109/TVT.2012.2183626

    Article  Google Scholar 

  14. Lefebvre G, Gauthier JY, Hijazi A et al (2017) Observability-index-based control strategy for induction machine sensorless drive at low speed. IEEE Trans Ind Electron 64:1929–1938. https://doi.org/10.1109/TIE.2016.2619662

    Article  Google Scholar 

  15. Suwankawin S, Sangwongwanich S (2005) Design strategy of an adaptive full-order observer for speed-sensorless induction-motor Drives-tracking performance and stabilization. IEEE Trans Ind Electron 53:96–119. https://doi.org/10.1109/TIE.2005.862308

    Article  Google Scholar 

  16. Zbede YB, Gadoue SM, Atkinson DJ (2016) Model predictive MRAS estimator for sensorless induction motor drives. IEEE Trans Ind Electron 63:3511–3521. https://doi.org/10.1109/TIE.2016.2521721

    Article  Google Scholar 

  17. Chen B, Yao W, Chen F, Lu Z (2015) Parameter sensitivity in sensorless induction motor drives with the adaptive full-order observer. IEEE Trans Ind Electron 62:4307–4318. https://doi.org/10.1109/TIE.2014.2388197

    Article  ADS  Google Scholar 

  18. Kubota H, Matsuse K, Nakano T (1993) DSP-based speed adaptive flux observer of induction motor. IEEE Trans Ind Appl 29:344–348. https://doi.org/10.1109/28.216542

    Article  Google Scholar 

  19. Sun W, Gao J, Yu Y et al (2016) Robustness improvement of speed estimation in speed-sensorless induction motor drives. IEEE Trans Ind Appl 52:2525–2536. https://doi.org/10.1109/TIA.2015.2512531

    Article  Google Scholar 

  20. Zaky MS, Metwaly MK (2016) Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations. IEEE J Emerg Sel Top Power Electron 4:1416–1429. https://doi.org/10.1109/JESTPE.2016.2597003

    Article  Google Scholar 

  21. Alonge F, Cangemi T, D’Ippolito F et al (2015) Convergence analysis of extended Kalman filter for sensorless control of induction motor. IEEE Trans Ind Electron 62:2341–2352. https://doi.org/10.1109/TIE.2014.2355133

    Article  Google Scholar 

  22. Yin Z, Li G, Zhang Y, et al (2016) A speed and flux observer of induction motor based on extended Kalman filter and Markov chain. IEEE Trans Power Electron 32:7096. https://doi.org/10.1109/tpel.2016.2623806

    Article  ADS  Google Scholar 

  23. Jansen PL, Lorenz RD (1993) Accuracy limitations of velocity and flux estimation in direct field oriented induction machines. In: 1993 fifth European conference on power electronics and applications, vol 4, pp 312–318

    Google Scholar 

  24. Blasco-Gimenez R, Asher GM, Sumner M, Bradley KJ (1996) Dynamic performance limitations for MRAS based sensorless induction motor drives. I. Stability analysis for the closed loop drive. IEE Proc Electr Power Appl 143:113–122. https://doi.org/10.1049/ip-epa:19960104

    Article  Google Scholar 

  25. Montanari M, Peresada SM, Rossi C, Tilli A (2007) Speed sensorless control of induction motors based on a reduced-order adaptive observer. IEEE Trans Control Syst Technol 15:1049–1064. https://doi.org/10.1109/TCST.2007.899714

    Article  Google Scholar 

  26. Maes J, Melkebeek JA (2000) Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans Ind Appl 36:778–785. https://doi.org/10.1109/28.845053

    Article  Google Scholar 

  27. Yin Z, Zhang Y, Du C et al (2016) Research on anti-error performance of speed and flux estimation for induction motors based on robust adaptive state observer. IEEE Trans Ind Electron 63:3499–3510. https://doi.org/10.1109/TIE.2016.2524414

    Article  Google Scholar 

  28. Barambones O, Alkorta P (2014) Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans Ind Electron 61:6556–6565. https://doi.org/10.1109/TIE.2014.2316239

    Article  Google Scholar 

  29. Lin FJ, Chang CK, Huang PK (2007) FPGA-Based adaptive backstepping sliding-mode control for linear induction motor drive. IEEE Trans Power Electron 22:1222–1231. https://doi.org/10.1109/TPEL.2007.900553

    Article  ADS  Google Scholar 

  30. Sabanovic A, Izosimov DB (1981) Application of sliding modes to induction motor control. IEEE Trans Ind Appl IA-17:41–49. https://doi.org/10.1109/tia.1981.4503896

    Article  Google Scholar 

  31. Alonge F, Cirrincione M, D’Ippolito F et al (2017) Robust active disturbance rejection control of induction motor systems based on additional sliding-mode component. IEEE Trans Ind Electron 64:5608–5621. https://doi.org/10.1109/TIE.2017.2677298

    Article  Google Scholar 

  32. Gao Z (2003) Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the 2003 American control conference, pp 4989–4996

    Google Scholar 

  33. Xu W, Zou J, Mu C (2016) Improved model predictive current control strategy-based rotor flux for linear induction machines. IEEE Trans Appl Supercond 26:1–5. https://doi.org/10.1109/TASC.2016.2594805

    Article  Google Scholar 

  34. Zou J, Xu W, Ye C (2017) Improved deadbeat control strategy for linear induction machine. IEEE Trans Magn 53:1–4. https://doi.org/10.1109/TMAG.2017.2675918

    Article  Google Scholar 

  35. Li S, Yang J, Chen W-H, Chen X (2014) Disturbance observer-based control: methods and applications, 1st edn. CRC Press Inc., Boca Raton

    Google Scholar 

  36. Padula F, Visioli A (2016) Set-point filter design for a two-degree-of-freedom fractional control system. IEEECAA J Autom Sin 3:451–462. https://doi.org/10.1109/JAS.2016.7510100

    Article  MathSciNet  Google Scholar 

  37. Fujimoto Y, Kawamura A (1995) Robust servo-system based on two-degree-of-freedom control with sliding mode. IEEE Trans Ind Electron 42:272–280. https://doi.org/10.1109/41.382138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Dian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dian, R., Xu, W., Liu, Y. (2019). Speed Sensorless Control Strategy for LIM Based on Extended State Observer. In: Xu, W., Islam, M., Pucci, M. (eds) Advanced Linear Machines and Drive Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9616-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9616-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9615-1

  • Online ISBN: 978-981-13-9616-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics