Skip to main content

Climate Change, Water Resources, and Agriculture: Impacts and Adaptation Measures

  • Chapter
  • First Online:
Global Climate Change and Environmental Policy

Abstract

Agriculture is one of the key domains that is significantly affected by climate change. The chapter presents the observed and projected impact of climate change on freshwater resources globally. In addition to this, case studies of successful implementation of adaptation measures adopted to tackle climate change-induced water stress in agriculture have been discussed with a special focus on high-altitude farming systems particularly vulnerable to increasing climate risk. As one of the potential adaptation measures, the relevance of water footprint as a tool to optimize water use and strategize cropping patterns with respect to crop water use efficiency and prevailing climatic conditions has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger N, Arnell N, Tompkins E (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

    Article  Google Scholar 

  • Agarwal A, Narain S (eds) (1997) Dying wisdom: rise, fall and potential of India’s traditional water harvesting systems. Center for Science and Environment, New Delhi, 404 pp

    Google Scholar 

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57(5):963–974

    Article  Google Scholar 

  • Alkama R, Decharme B, Douville H, Ribes A (2011) Trends in global and basin scale runoff over the late twentieth century: methodological issues and sources of uncertainty. J Clim 24(12):3000–3014

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp

    Google Scholar 

  • Anderson J, Arblaster K, Bartley J (2008) Climate change-induced water stress and its impacts on natural and managed ecosystems. European Parliament, Brussels

    Google Scholar 

  • Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva

    Google Scholar 

  • Birkenholtz T (2017) Assessing India’s drip-irrigation boom: efficiency, climate change and groundwater policy. Water Int 42:663–677

    Article  Google Scholar 

  • Boland AM, Mitchell PD, Jerie PH, Goodwin I (1993) Effect of regulated deficit irrigation on tree water use and growth of peach. J Hortic Sci 68:261–274

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314

    Article  CAS  Google Scholar 

  • Bruinsma J (2003) World agriculture: towards 2015/2030. An FAO perspective. Earthscan, London, 444 pp

    Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modelling the recent evolution of global drought and projections for the 21 st century with the Hadley Centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  • Burton I (1996) The growth of adaptation capacity: practice and policy. In: Smith JB et al (eds) Adapting to climate change: an international perspective. Springer, New York, pp 55–67

    Chapter  Google Scholar 

  • Chapagain AK, Hoekstra AY, Savenije HHG (2006) Water saving through international trade of agricultural products. Hydrol Earth Syst Sci 10:455–468

    Article  Google Scholar 

  • Chartzoulakis K, Bertaki M (2015) Sustainable water management in agriculture under climate change, 4 agriculture and agricultural. Sci Procedia 4:88–98

    Google Scholar 

  • Chen Y, Li W, Deng H, Fang G, Li Z (2016) Changes in Central Asia’s water tower: past, present and future. Sci Report 6:35458

    Article  CAS  Google Scholar 

  • Cisneros JBE, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS, (2014) Freshwater resources. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 229–269

    Google Scholar 

  • Clements T, D’Amato V, Taylor T (2010) Integrating water infrastructure in a new paradigm for sustainable, resilient communities. In: Proceedings of the Water Environment Federation, Cities of the Future/Urban River Restoration, pp 801–825

    Google Scholar 

  • Clouse C, Anderson N, Shippling T (2017) Ladakh’s artificial glaciers: climate-adaptive design for water scarcity. Clim Dev 9(5):428–438. https://doi.org/10.1080/17565529.2016.1167664

    Article  Google Scholar 

  • Clow DW (2010) Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim 23(9):2293–2306

    Article  Google Scholar 

  • Collins DN (2008) Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum. Ann Glaciol 48(1):119–124

    Article  Google Scholar 

  • Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Chang 117(1–2):41–53

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydro meteorol 5:1117–1130

    Google Scholar 

  • Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22(10):2773–2792

    Article  Google Scholar 

  • Döll P, Müller Schmied H (2012) How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ Res Lett 7:014037

    Article  Google Scholar 

  • Earman S, Campbell AR, Phillips FM, Newman BD (2006) Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J Geophys Res Atmos 111(D9):D09302

    Article  CAS  Google Scholar 

  • Elliott M, Armstrong A, Lobuglio J, Bartram J (2011) In: De Lopez T (ed) Technologies for climate change adaptation: the water sector, TNA guidebook series. UNEP Risø Centre, Roskilde, 114 pp

    Google Scholar 

  • Finger R, Hediger W, Schmid S (2011) Irrigation as adaptation strategy to climate change – a biophysical and economic appraisal for Swiss maize production. Clim Chang 105(3–4):509–528

    Article  Google Scholar 

  • Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Chang 75(1–2):47–55

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch SMJ, Hagen JO, Van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857

    Google Scholar 

  • Gerten D, Rost S, von Bloh W, Lucht W (2008) Causes of change in 20th century global river discharge. Geophys Res Lett 35(20):L20405

    Article  Google Scholar 

  • Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12(5):885–899

    Article  Google Scholar 

  • Gerten D, Lucht W, Ostberg S, Heinke J, Kowarsch M, Kreft H, Kundzewicz ZW, Rastgooy J, Warren R, Schellnhuber HJ (2013) Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environ Res Lett 8(3):034032

    Article  Google Scholar 

  • Ghazouani W, Molle F, Swelam A, Rap E, Abdo A (2014) Understanding farmers’ adaptation to water scarcity: a case study from the western Nile Delta, Egypt, IWMI Research Report 160. International Water Management Institute (IWMI), Colombo. 31p

    Google Scholar 

  • Giannakis E, Bruggeman A, Djuma H, Kozyra J, Hammer J (2016) Water pricing and irrigation across Europe: opportunities and constraints for adopting irrigation scheduling decision support systems. Water Sci Technol Water Supply 16(1):245–252

    Article  Google Scholar 

  • Gil J, Kamanda J (2015) Policies and initiatives related to water and climate change in agriculture: case studies from Brazil and Africa. In: Zolin CA, Rodrigues R (eds) Impact of climate change on water resources in agriculture. CRC Press, Taylor and Francis Group, Boca Raton, pp 39–61

    Google Scholar 

  • Goodwin I, Jerie P (1992) Regulated deficit irrigation: from concept to practice. Aust N Z Wine Ind J 5:131–133

    Google Scholar 

  • Government of Western Australia (2003) Securing our water future: a state water strategy for Western Australia. Government of WA, 64 pp. Available http://dows.lincdigital.com.au/files/State_Water_Strategy_complete_001.pdf

  • Grafton RQ, Williams J, Perry CJ, Molle F, Ringler C, Steduto P et al (2018) The paradox of irrigation efficiency. Science 361:748–750

    Article  CAS  Google Scholar 

  • Grossman D (2015) As Himalayan glaciers melt, two towns face the fallout. Yale Environment 360. http://e360.yale.edu/feature/as_himalayan_glaciers_melt_two_towns_face_the_fallout/2858/. Accessed 8 Oct 2018

  • Gutschow K, Mankelow S (2001) Dry winters, dry summers: water shortages in Zanskar. Ladakh Studies 15:28–32

    Google Scholar 

  • Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K, Kanae S (2013) A global water scarcity assessment under shared socio-economic pathways – part 2: water availability and scarcity. Hydrol Earth Syst Sci 17:2393–2413

    Article  Google Scholar 

  • Hidalgo HG, Das T, Dettinger MD, Cayan DR, Pierce DW, Barnett TP, Bala G, Mirin A, Wood AW, Bonfils C, Santer BD, Nozawa T (2009) Detection and attribution of streamflow timing changes to climate change in the western United States. J Clim 22(13):3838–3855

    Article  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London

    Google Scholar 

  • Holman IP, Tascone D, Hess TM (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17(7):1629–1641

    Article  Google Scholar 

  • Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour Res 47:W07511

    Article  Google Scholar 

  • ICIMOD (2009) Water storage: a strategy for climate change adaptation in the Himalayas, sustainable mountain development no. 56, special issue. International Centre for Integrated Mountain Development, Kathmandu

    Google Scholar 

  • Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124

    Article  Google Scholar 

  • Immerzeel WW, Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  CAS  Google Scholar 

  • IPCC (2000) Summary for policy makers: emission scenarios. A special report of IPCC Working Group III. Available https://ipcc.ch/pdf/special-reports/spm/sres-en.pdf. Accessed 25 Oct 2018

  • IPCC (2007a) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, eds]. Cambridge University Press, Cambridge, 976pp

    Google Scholar 

  • IPCC (2007c) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 104 pp

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 1535 pp

    Google Scholar 

  • Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129

    Article  Google Scholar 

  • Jeelani G (2008) Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeol J 16(8):1625–1633

    Article  CAS  Google Scholar 

  • Kang S, Hao X, Du T, Tong L, Su X, Lu H, Li X, Huo Z, Li S, Ding R (2017) Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice. Agric Water Manag 179:5–17. https://doi.org/10.1016/j.agwat.2016.05.007

    Article  Google Scholar 

  • Knox JW, Kay MG, Weatherhead EK (2012) Water regulation, crop production and agricultural water management—understanding farmer perspectives on irrigation efficiency. Agric Water Manag 108(1):3–8

    Article  Google Scholar 

  • Koboltschnig GR, Schöner W, Zappa M, Holzmann H (2007) Contribution of glacier melt to stream runoff: if the climatically extreme summer of 2003 had happened in 1979. Ann Glaciol 46(1):303–308

    Article  Google Scholar 

  • Konar M, Hussein Z, Hanasaki N, Mauzerall DL, Rodriguez-Iturbe I (2013) Virtual water trade flows and savings under climate change. Hydrol Earth Syst Sci 17(8):3219–3234

    Article  Google Scholar 

  • Korhonen J, Kuusisto E (2010) Long-term changes in the discharge regime in Finland. Hydrol Res 41(3–4):253–268

    Article  Google Scholar 

  • Kundzewicz ZW, Döll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54(4):665–675

    Article  Google Scholar 

  • Levidow L, Zaccaria D, Maia R, Vivas E, Todorovic M, Scardigno A (2014) Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric Water Manag 146:84–94

    Article  Google Scholar 

  • Lovarelli D, Bacenetti J, Fiala M (2016) Science of the total environment water footprint of crop productions: a review. Sci Total Environ 548–549:236–251

    Article  CAS  Google Scholar 

  • Loveys BR, Dry PR, McCarthy MG (1999) Using plant physiology to improve water use efficiency of horticultural crops. Acta Hortic 537:187–199

    Google Scholar 

  • Luquet D, Vidal A, Smith M, Dauzatd J (2005) More crop per drop: how to make it acceptable for farmers? Agric Water Manag 76(2):108–119

    Article  Google Scholar 

  • Mali S, Singh DK, Sarangi A, Parihar SS (2018) Assessing water footprints and virtual water flows in Gomti river basin of India. Curr Sci 115(4):721–728

    Article  Google Scholar 

  • Malik RPS, Giordano M, Rathore MS (2016) The negative impact of subsidies on the adoption of drip irrigation in India: evidence from Madhya Pradesh. Int J Water Resour Dev 0627:1–12

    Google Scholar 

  • Malone EL (2010) Changing glaciers and hydrology in Asia: addressing vulnerabilities to glacier melt impacts. United States Agency for International Development (USAID) Report November 2010, pp 1–113

    Google Scholar 

  • Mamitimin Y, Feike T, Seifert I, Doluschitz R (2015) Irrigation in the Tarim Basin, China: farmers’ response to changes in water pricing practices. Environ Earth Sci 73(2):559–569

    Article  Google Scholar 

  • Mann M, Gaudet B (2018) SRES’ scenarios and ‘RCP’ pathways. In: Meteorology to mitigation: understanding global warming. Available https://www.e-education.psu.edu/meteo469/node/145. Accessed 25 Oct 2018

  • Mannini P, Genovesi R, Letterio T (2013) IRRINET: large scale DSS application for on-farm irrigation scheduling. Procedia Environ Sci 19:823–829

    Article  Google Scholar 

  • McCartney M, Smakhtin V (2010) Water storage in an era of climate change: addressing the challenges of increasing rainfall variability, IWMI Blue Paper. International Water Management Institute, Colombo

    Google Scholar 

  • McVeigh M, Wyllie A (2018) Memo on irrigation efficiency and ESPA storage changes, State of Idaho Department of Water Resources

    Google Scholar 

  • Min S, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more intense precipitation extremes. Nature 470(7334):378–381

    Article  CAS  Google Scholar 

  • Mingle J (2009) When the glacier left. Boston Globe. Available http://archive.boston.com/bostonglobe/ideas/articles/2009/11/29/when_the_glacier_left/. Accessed 20 Oct 2018

  • Mingle J (2015) Fire and ice: soot, solidarity and survival on the roof of the world. St. Martin’s Press, New York

    Google Scholar 

  • Molden D, Oweis T, Steduto P, Bindraban P, Hanjra MA, Kijne J (2010) Improving agricultural water productivity: between optimism and caution. Agric Water Manag 97:528–535

    Article  Google Scholar 

  • Molden DJ, Vaidya RA, Shrestha AB, Rasul G, Shrestha MS (2014) Governance and management of local water storage in the Hindu Kush Himalayas. Int J Water Resour Dev. Taylor & Francis

    Google Scholar 

  • Molle F, Berkoff J (2007) Water pricing in irrigation: the lifetime of an idea. In: Molle F, Berkoff J (eds) Irrigation water pricing: the gap between theory and practice. CABI, Wallingford, pp 1–20

    Chapter  Google Scholar 

  • Molle F (2008) Can water pricing policies regulate irrigation use? In: 13th World Water Congress, September, Montpellier, France

    Google Scholar 

  • Molle F, Tanouti O (2017) Squaring the circle: agricultural intensification vs. water conservation in Morocco. Agric Water Manag 192:170–179

    Article  Google Scholar 

  • Nelson G, Palazzo A, Ringler C, Sulser T, Batka M (2009) The role of international trade in climate change adaptation, ICTSDIPC platform on climate change, Agriculture and Trade Series, Issue Brief 4

    Google Scholar 

  • Nüsser M, Dame J, Kraus B, Baghel R, Schmidt S (2018) Socio-hydrology of “artificial glaciers” in Ladakh, India: assessing adaptive strategies in a changing cryosphere. Reg Environ Chang:1–11

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Article  CAS  Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385

    Article  CAS  Google Scholar 

  • Perry C, Steduto P, Allen RG, Burt CM (2009) Increasing productivity in irrigated agriculture: agronomic constraints and hydrological realities. Agric Water Manag 96:1517–1524

    Article  Google Scholar 

  • Perry C, Steduto P, Karajeh F (2017) Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo

    Google Scholar 

  • Pfeiffer L, Lin Lawell C-YC (2014) Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. J Environ Econ Manag 67(2):189–208. https://doi.org/10.1016/j.jeem.2013.12.002

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudre N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci U S A 104(39):15242–15247

    Article  CAS  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    Article  CAS  Google Scholar 

  • Portmann FT, Döll P, Eisner S, Flörke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8(2):024023

    Article  Google Scholar 

  • Rabassa J (2009) Impact of global climate change on glaciers and permafrost of South America, with emphasis on Patagonia, Tierra del Fuego, and the Antarctic Peninsula. Dev Earth Surf Process 13:415–438

    Article  Google Scholar 

  • Rabatel A et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102

    Article  Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113–120

    Article  Google Scholar 

  • Rizvi J (1998) Ladakh: crossroads of high Asia. Oxford University Press, Delhi

    Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds)]

    Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell N, Clark D, Dankers R, Eisner S, Fekete B, Colón-González F, Gosling S, Kim H, Liu X, Masaki Y, Portmann F, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250. https://doi.org/10.1073/pnas.1222460110

    Article  CAS  Google Scholar 

  • Sepaskhah AR, Ahmadi SH (2010) A review on partial root-zone drying irrigation. Int J Plant Prod 4(4)

    Google Scholar 

  • Shaheen FA (2016) The art of glacier grafting: innovative water harvesting techniques in Ladakh. IWMI-Tata Water Policy Research Highlight, 8. 8p

    Google Scholar 

  • Shiklomanov AI, Lammers RB, Rawlins MA, Smith LC, Pavelsky TM (2007) Temporal and spatial variations in maximum river discharge from a new Russian data set. J Geophys Res Biogeosci 112(G4):G04S53

    Article  Google Scholar 

  • Skaugen T, Stranden HB, Saloranta T (2012) Trends in snow water equivalent in Norway (1931–2009). Hydrol Res 43(4):489–499

    Article  Google Scholar 

  • Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Chang 7:85–114

    Article  Google Scholar 

  • Smith M, Kivumbi D (2000) Use of the FAO CROPWAT model in deficit irrigation studies. In: Deficit irrigation practices. Food and Agriculture Organization, Rome. Available http://www.fao.org/docrep/004/Y3655E/y3655e05.htm. Accessed 3 Oct 2018

  • Stern N (2006) The economics of climate change: the stern review. Cambridge University Press, Cambridge

    Google Scholar 

  • Sugden F, Shrestha L, Bharati L, Gurung P, Maharjan L, Janmaat J, Price J, Sherpa TYC, Bhattarai U, Koirala S (2014) Climate change, out-migration and agrarian stress: the potential for upscaling small-scale water storage in Nepal (research report). International Water Management Institute (IWMI), Colombo. https://doi.org/10.5337/2014.210

  • Takala M, Pulliainen J, Metsamaki SJ, Koskinen JT (2009) Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Trans Geosci Remote Sens 47(9):2996–3007

    Article  Google Scholar 

  • Tan A, Adam JC, Lettenmaier DP (2011) Change in spring snowmelt timing in Eurasian Arctic rivers. J Geophys Res Atmos 116:D03101

    Google Scholar 

  • Taylor IH, Burke E, McColl L, Falloon PD, Harris GR, McNeall D (2013) The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci 17(6):2339–2358

    Article  Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC) (1992) United nations framework convention on climate change: text, Geneva, World Meteorological Organization and United Nations Environment Program

    Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC) (1998) The Kyoto Protocol to the UNFCCC. In: UNFCCC, Report of the Conference of the Parties Third Session, Kyoto, UNFCCC, pp 4–29

    Google Scholar 

  • Vaidya RA (2015) Governance and management of local water storage in the Hindu Kush Himalayas. Int J Water Resour Dev 31(2):253–268

    Article  Google Scholar 

  • Venkatramanan V, Shah S (2019) Climate smart agriculture technologies for environmental management: the intersection of sustainability, resilience, wellbeing and development. In: Shah S et al (eds) Sustainable green technologies for environmental management. Springer Nature Singapore Pte Ltd., Singapore, pp 29–51. https://doi.org/10.1007/978-981-13-2772-8_2

    Chapter  Google Scholar 

  • Vidal JP, Martin E, Kitova N, Najac J, Soubeyroux J-M (2012) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol Earth Syst Sci 16(8):2935–2955

    Article  Google Scholar 

  • Vince G (2010) A Himalayan village builds artificial glaciers to survive global warming. Sci Am. https://www.scientificamerican.com/article/artificial-glaciers-to-survive-global-warming/. Accessed 21 Oct 2018

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water ResWater Res 43:W07447

    Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schreier H, Schwaiger K, Vuille M, Woods R (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15(2):471–504

    Article  Google Scholar 

  • Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T, Tessler Z, Schewe J (2013) Multi-model projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40(17):4626–4632

    Article  Google Scholar 

  • Wang A, Lettenmaier DP, Sheffield J (2011) Soil moisture drought in China, 1950–2006. J Clim 24(13):3257–3271

    Article  Google Scholar 

  • Wang YB, Wu PT, Engel BA, Sun SK (2015) Comparison of volumetric and stress-weighted water footprint of grain products in China. Ecol Indic 48:324–333

    Google Scholar 

  • Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci U S A 105:18215–18220

    Article  CAS  Google Scholar 

  • Yoo S-H, Choi J-Y, Lee S-H, Oh Y-G, Yun DK (2013) Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea. Agric Water Manag 117:43–54

    Article  Google Scholar 

  • Zeng Z, Liu J, Koeneman PH, Zarate E, Hoekstra AY (2012) Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China. Hydrol Earth Syst Sci 16(8):2771–2781

    Article  Google Scholar 

  • Zou X, Li Y, Gao Q, Wan Y (2012) How water saving irrigation contributes to climate change resilience – a case study of practices in China. Mitig Adapt Strateg Glob Chang 17:111–132

    Article  Google Scholar 

  • Zou X, Cremades R, Gao Q, Wan Y, Qin X (2013) Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response : a case study of China. Agric Water Manag 129:9–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, D., Agarwal, T. (2020). Climate Change, Water Resources, and Agriculture: Impacts and Adaptation Measures. In: Venkatramanan, V., Shah, S., Prasad, R. (eds) Global Climate Change and Environmental Policy. Springer, Singapore. https://doi.org/10.1007/978-981-13-9570-3_7

Download citation

Publish with us

Policies and ethics