Skip to main content

Secondary Metabolite Production in Medicinal Plants Using Tissue Cultures

  • Chapter
  • First Online:
Medically Important Plant Biomes: Source of Secondary Metabolites

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 15))

  • 726 Accesses

Abstract

Plants are an incredible treasure of lifesaving drugs and other products of diverse applications. Plant tissue cultures can be established routinely under sterile conditions from explants like plant leaves, stems, roots, meristems, etc. for both ways for multiplication and extraction of secondary metabolites. Strain improvement, methods for the selection of high-producing cell lines, and medium optimizations can lead to an enhancement in secondary metabolite production. Production of natural as well as recombinant bioactive products of commercial importance through the exploitation of plant cells has attracted substantial attention over the past few decades. Swift acceleration in the production of explicit secondary metabolism compounds at a rate similar or superior to the intact plants has been discovered through innovative plant cell cultures in the last few years. In view of obtaining optimum yields suitable for commercial exploitation, isolation of the biosynthetic activities of cultured cells has been focused upon, which is being achieved by the optimization of the cultural conditions, selection of high-yielding strains, and employment of transformation methods, precursor feeding, and immobilization techniques. Production of secondary metabolites through hairy root system is based on Agrobacterium rhizogenes inoculation and has grabbed substantial attention during the past few decades as an efficient method of secondary metabolite production in the plant roots. Due to certain reasons like very slow growth of root systems of higher plants and very difficult harvesting, alternative methods of bioactive compound production have been utilized and promising results have been obtained. Root cultures constitute a promising option for the production of medicinally important bioactive compounds. Organ cultures and in vitro biomass production often have sites of synthesis and storage of secondary metabolites in separate compartments. Elicitors, compounds triggering the formation of secondary metabolites, can be abiotic or biotic. Natural elicitors include polysaccharides such as pectin and chitosan, which are also used in the immobilization and permeabilization of plant cells. The present chapter reviews the secondary metabolite production through hairy root cultures, organ cultures, elicitation, and economically valuable secondary metabolites produced through tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MZ, Kamaluddin A (2006) Improving quality of medicinal herbs through physico-chemical and molecular approaches. In: Abdin MZ, Abrol YP, Narosa (eds) Traditional systems of medicine. Publishing House Pvt Ltd, India, pp 30–39

    Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured, Carol Stream

    Google Scholar 

  • Aftab F, Akram S, Iqbal J (2008) Estimation of fixed oil from various explants and in vitro callus cultures of Jojoba (Simmondsia chinensis). Pak J Bot 40:1467–1471

    CAS  Google Scholar 

  • Agarwal M, Kamal R (2007) Studies on flavonoid production using in vitro cultures of Momordica charantia L. Indian J Biotechnol 6:277–279

    CAS  Google Scholar 

  • Ahmad B, Raina A, Naikoo MI, Khan S (2019a) Role of methyl jasmonates in salt stress tolerance in crop plants. In: MIR K, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, United Kingdom, pp 371–384. https://doi.org/10.1016/B978-0-12-816451-8.00023-X

    Chapter  Google Scholar 

  • Ahmad B, Raina A, Samiullah K (2019b) Biotic and abiotic stresses, impact on plants and their response. In: Wani SH (ed) Disease resistance in crop plants. https://doi.org/10.1007/978-3-030-20728-1_1

    Chapter  Google Scholar 

  • Alikaridis F, Papadakis D, Pantelia K, Kephalas T (2000) Flavonolignan production from Silybium marianum transformed and untransformed root cultures. Fitoterapia 71:379–384

    Article  PubMed  CAS  Google Scholar 

  • Anitha S, Kumari BDR (2006) Stimulation of reserpine biosynthesis in the callus of Rauvolfia tetraphylla L. by precursor feeding. Afr J Biotechnol 5:659–661

    CAS  Google Scholar 

  • Aoyagi H, Akimoto-Tomiyama C, Tanaka H (2006) Preparation of mixed alginate elicitors with high activity for the efficient production of 5′-phosphodiesterase by Catharanthus roseus cells. Biotechnol Lett 28:1567–1571

    Article  PubMed  CAS  Google Scholar 

  • Arya D, Patn V, Kant U (2008) In vitro propagation and quercetin quantification in callus cultures of Rasna (Pluchea lanceolata Oliver &Hiern.). Indian J Biotechnol 7:383–387

    CAS  Google Scholar 

  • Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19:13541–13563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balbuena TS, Santa-Catarina C, Silvera V et al (2009) In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum DC. (Piperaceae). Acta Bot Bras 23:229–236

    Article  Google Scholar 

  • Baldi A, Dixit VK (2008) Enhanced artemisinin production by cell cultures of Artemisia annua. Curr Trends Biotechnol Pharmacol 2:341–348

    CAS  Google Scholar 

  • Boland R, Vasconsuelo A, Picotto G, Giuletti AM (2003a) Involvement of the PLC/PKC pathway in chitosan-induced anthraquinone production by Rubia tinctorum cell cultures. Plant Sci 165:429–436

    Article  CAS  Google Scholar 

  • Boland R, Vasconsuelo A, Picotto G, Giuletti AM (2003b) Signal transductionevents mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum L. Plant Sci 166:405–413

    Google Scholar 

  • Boland R, Vasconsuelo A, Picotto G, Giuletti AM (2006) Involvement of G-proteins in chitosan-induced anthraquinone synthesis in Rubia tinctorum L. Plant Physiol 128:29–37

    Article  CAS  Google Scholar 

  • Brain KR, Lockwood GB (1976) Hormonal control of steroid levels in tissue cultures from Trigonella foenum-graecum. Phytochemistry 15:1651–1654

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  PubMed  CAS  Google Scholar 

  • Ciddi V, Srinivasan V, Shuler VM (1995) Elicitation of Taxus cell cultures for production of taxol. Biotechnol Lett 17:1343–1346

    Article  CAS  Google Scholar 

  • Cragg GM, Schepartz SA, Suffness M, Grever MR (1993) The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod 56:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Dar TA, Uddin M, Khan MMA et al (2015) Effect of Co-60 gamma irradiated chitosan and phosphorus fertilizer on growth, yield and trigonelline content of Trigonella foenum-graecum L. J Radiat Res Appl Sci 8:446–458

    Article  Google Scholar 

  • Daxenbichler ME, VanEtten CH, Hallinan E et al (1971) Seeds as sources of L-DOPA. J Med Chem 14:463–465

    Article  PubMed  CAS  Google Scholar 

  • Devi CS, Murugesh S, Srinivasan VM (2006) Gymnemic acid production in suspension calli culture of Gymnema sylvestre. J Appl Sci 6:2263–2268

    Article  CAS  Google Scholar 

  • Dhawan S, Shasany AK, Naqvi AA, Kumar S, Khanuja SPS (2003) Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue Org Cult 75:87–94

    Article  CAS  Google Scholar 

  • Dicosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13(3):425–453

    Article  PubMed  CAS  Google Scholar 

  • Doares S, Syrovets HT, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farzami MS, Ghorbant M (2005) Formation of catechin in callus cultures and micropropagation of Rheum ribes L. Pak J Biol Sci 8:1346–1350

    Article  Google Scholar 

  • Fazilatun N, Nornisah M, Zhari I (2004) Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharm Biol 42(6):404–408

    Article  CAS  Google Scholar 

  • Fett-Neto AG, Stewart JM, Nicholson SA et al (1994) Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of T. cuspidata. Biotechnol Bioeng 44:967–971

    Article  PubMed  CAS  Google Scholar 

  • Francoise B, Hossein S, Halimeh H, Zahra NF (2007) Growth optimization of Zataria multiflora Boiss. Tissue cultures and rosmarininc acid production improvement. Pak J Biol Sci 10:3395–3399

    Article  PubMed  CAS  Google Scholar 

  • Furuya T, Ikuta A, Syono K (1972) Alkaloids from callus cultures of Papaver somniferum. Phytochemistry 11:3041–3044

    Article  CAS  Google Scholar 

  • Gao SL, Zhu DN, Cai ZH et al (2004) Organ culture of a precious Chinese medicinal plant – Fritillaria unibracteata. Plant Cell Tissue Organ Cult 59:197–201

    Article  Google Scholar 

  • Gerasimenko I, Sheludko Y, Unger M, Stöckigt J (2001) Development of an efficient system for the separation of indole alkaloids by high performance liquid chromatography and its applications. Phytochem Anal: An Int J Plant Chem Biochem Tech 12(2):96–103

    Article  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22

    Article  PubMed  CAS  Google Scholar 

  • Gopi C, Vatsala TM (2006) In vitro studies on effects of plant growth regulators on callus and suspension culture biomass yield from Gymnema sylvestre R. Br Afr J Biotechnol 5:1215–1219

    CAS  Google Scholar 

  • Gorelick J, Bernstein N (2014) Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. In: Sparks DL (ed) Advances in agronomy. Elsevier, Amsterdam, pp 201–230

    Google Scholar 

  • Grzegorczyk I, Wysokinska H (2008) Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compounds effect of triacontanol. Acta Soc Botanicorum Poloniae 73:99–104

    Google Scholar 

  • Hashimoto T, Yun DJ, Yamada Y (1993) Production of tropane alkaloids in genetically engineered root cultures. Pyhtochemistry 32:713–718

    Article  CAS  Google Scholar 

  • Hiraoka N, Bhatt ID, Sakurai Y, Chang JI (2004) Alkaloid production by somatic embryo cultures of Corydalis ambigua. Plant Biotechnol 21:361–366

    Article  CAS  Google Scholar 

  • Hohtola A, Jalonen J, Tolnen A et al (2005) Natural product formation by plants, enhancement, analysis, processing and testing. In: Jalkanen A, Nygren P (eds) Sustainable use renewable natural resources from principles to practices. University of Helsinki Publication, Finland, pp 34–69

    Google Scholar 

  • Holden RR, Holden MA, Yeoman MM (1988) The effects of fungal elicitation on secondary metabolism in cell cultures of Capsicum frutescens. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, UK, pp 67–72

    Google Scholar 

  • Hussain MS, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishida H (1988) Interfaces in polymer, ceramic, and metal matrix composites; proceedings of the second international conference on composite interfaces (ICCIII), Cleveland, OH, June 13–17, 1988

    Google Scholar 

  • Iyer RI, Jayaraman G, Ramesh A (2009) In vitro responses and production of phytochemicals of potential medicinal value in nutmeg, Myristica fragrans Houtt. Indian J Sci Tech 2:65–70

    Google Scholar 

  • Jeong GA, Park DH (2007) Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system. Appl Biochem Biotechnol 130:436–446

    Article  Google Scholar 

  • Jordon MA, Wilson L (1995) Microtuble polymerization dynamics, mitotic, and cell death by paclitaxel at low concentration. Am Chem Soc Symp Ser 583:138–153

    CAS  Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A et al (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    CAS  Google Scholar 

  • Kašparová M, Siatka T, Dušek J (2009) Production of isoflavonoids in the Trifolium pratense L. suspension culture. Ceska Slov Farm 58(2):67–70

    Google Scholar 

  • Ketchum RE, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Khan T, Krupadanam D, Anwar Y (2008) The role of phytohormone on the production of berberine in the calli culture of an endangered medicinal plant, turmeric (Coscinium fenustratum L.). Afr J Biotechnol 7:3244–3246

    CAS  Google Scholar 

  • Khanam N, Khoo C, Khan AG (2000) Effects of cytokinin/auxin combinations on organogenesis, shoot regeneration and tropane alkaloid production in Duboisia myoporoides. Plant Cell Tissue Organ Cult 62:125–133

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy roots in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Kim OT, Kim MY, Hong MH et al (2004) Stimulation of asiticoside accumulation in the whole plant cultures of Centella asiatica(L.) urban by elicitors. Plant Cell Rep 23:339–344

    Article  PubMed  CAS  Google Scholar 

  • Kim OT, Bang KH, Shin YS et al (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asitica (L.) urban elicited by methyl jasmonate. Plant Cell Rep 26:1914–1949

    Google Scholar 

  • Kim JS, Lee SY, Park SU (2008) Resveratol production in hairy root culture of peanut, ArachyshypogaeaL. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 7:3788–3790

    CAS  Google Scholar 

  • Kin N, Kunter B (2009) The effect of callus age, VU radiation and incubation time on trans-resvertrol production in grapevine callus culture. Tarim Bilimleri Dergisi 15:9–13

    Article  Google Scholar 

  • Kiong AL, Mahmood M, Fodzillan NM, Daud SK (2005) Effects of precursor supplementation on the production of triterpenes by Centella asiatica callus culture. Pak J Biol Sci 8:1160–1169

    Article  CAS  Google Scholar 

  • Klarzynski O, Friting B (2001) Stimulation of plant natural defenses. C R Acad Sci III 324:953–963

    Article  PubMed  CAS  Google Scholar 

  • Komaraiah P, Ramakrishna SV, Reddanna P, Kavikishore PB (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and it situ adsorption. J Biotechnol 10:181–187

    Article  Google Scholar 

  • Kornfeld A, Kaufman PB, Lu CR et al (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland culture. Plant Physiol Biochem 45:24–32

    Article  PubMed  CAS  Google Scholar 

  • Krolicka A, Kartanowicz R, Wosinskia S et al (2006) Induction of secondary metabolite production in transformed callus of Ammi majus L. grown after electromagnetic treatment of the culture medium. Enzyme Microbial Technol 39:1386–1389

    Article  CAS  Google Scholar 

  • Kusakari K, Yokoyama M, Inomata S (2000) Enhanced production of saikosaponins by root culture of Bupleurum falcatum L. using two step control of sugar concentration. Plant Cell Rep 19:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Cho SJ, Park MH et al (2007a) Growth and rutin production in hairy root culture of buck weed (Fagopyruum esculentum). Prep Biochem Biotechnol 37:239–246

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Xu H, Kim YK, Park SU (2007b) Rosmarinic acid production in hairy root cultures of Agasta cherugosa Kuntze. World J Microbiol Biotechnol 20:969–972

    Google Scholar 

  • Lee-Parsons CWT, Rogce AJ (2006) Precursor limitations in methyl jasmonate-induced Catharanthus roseus cell cultures. Plant Cell Rep 25:607–612

    Article  PubMed  CAS  Google Scholar 

  • Li W, Li M, Yang DL et al (2009) Production of podophyllotaxin by root culture of Podophyllum hexandrum Royle. Electron J Biol 5:34–39

    CAS  Google Scholar 

  • Lindsey K (1985) Manipulation by nutrient limitation of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. ev. annum. Planta 165:126–133

    Article  PubMed  CAS  Google Scholar 

  • Maharik N, Elgengaihi S, Taha H (2009) Anthocyanin production in callus cultures of Crataegus sinaica Bioss. Intrn J Acad Res 1:30–34

    Google Scholar 

  • Marconi PL, Selten LM, Cslcena EN et al (2008) Changes in growth and tropane alkaloid production in long-term culture of hairy roots of Brugmansia candida. Elect J Integr Biosci 3:38–44

    Google Scholar 

  • Mehrotra S, Kukreja AK, Khanuja SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. 11: 717–728

    Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M et al (2009) Steroidal lactones from Withania somnifera, an antioxidant plant for novel medicine. Molecules 14:2373–2393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misra N, Misra P, Datta SK, Mehrotra S (2005) In vitro biosynthesis of antioxidants from Hemidesmus indicus R. Br. cultures. In vitro Dev Biol Plant 41:285–290

    Article  CAS  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P et al (2008) Establishment of Withania somnifera hairy root cultures for the production of Withanoloid. A J Integ Plant Biol 50:915–981

    Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: MIR K, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, United Kingdom, pp 157–168. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

    Chapter  Google Scholar 

  • Narasimhan S, Nair M (2004) Release of berbeine and its crystallization in liquid medium of cell suspension cultures of Coscinium fenustratum (Gaertn.) Colebr. Curr Sci 86:1369–1371

    CAS  Google Scholar 

  • Nazif NM, Rady MR, Seif MM (2000) Stimulation of anthraquinone production in suspension cultures of Cassia acutifolia by salt stress. Fitoterapia 71:34–40

    Article  PubMed  CAS  Google Scholar 

  • Nikolaeva TN, Zagoskina NV, Zaprometov MN (2009) Production of phenolic compounds in callus cultures of tea plant under the effect of 2,4-D and NAA. Russ J Plant Physiol 56:45–49

    Article  CAS  Google Scholar 

  • Nogueira JMF, Romano A (2002) Essential oils from micropropagated plants of Lavandula viridis. Phytochem Anal 13:4–7

    Article  PubMed  CAS  Google Scholar 

  • Nurchgani N, Solichatun S, Anggarwulan E (2008) The reserpine production and callus growth of Indian snake root (Rauvolfia serpentina (L.) Benth. exKurz.) cultured by addition of Cu2+. Biodiversitas 9:177–179

    Article  Google Scholar 

  • Okrslar V, Plaper I, Kovac M et al (2007) Saponins in tissue culture of Primula verisL. In Vitro Cell Dev Biol Plant 43:644–651

    Article  CAS  Google Scholar 

  • Olivira AJB, Koika L, Reis FAM, Shepherd SL (2001) Callus culture of Aspidosperma ramiflorum Muell.-Arg. Growth and alkaloid production. Acta Sci 23:609–612

    Google Scholar 

  • Orihara Y, Furuya T (1990) Production of theanine and other – glutamyl derivatives by Camellia sinensis cultured cells. Plant Cell Rep 9:65–68

    Article  PubMed  CAS  Google Scholar 

  • Palazon J, Pinol MT, Cusido RM et al (1997) Application of transformed root technology to the production of bioactive metabolites. Recent Res Dev Plant Phys 1:125–143

    Google Scholar 

  • Park SU, Lee SY (2009) Anthraquinone production by hairy root culture of RubiaakaneNakai: influence of media and auxin treatment. Sci Res Essays 4:690–693

    Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47(1):176–187

    Article  Google Scholar 

  • Poornasri DB, Vimala A, Sai I, Chandra S (2008) Effect of cyanobacterial elicitor on neem cell suspension cultures. Ind J Sci Technol 1:1–5

    Google Scholar 

  • Qu JG, Yu XJ, Zhang W, Jin MF (2006) Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification. Sheng Wu Gong Cheng Xae Bae 22:299–305

    CAS  Google Scholar 

  • Quiala E, Barbon R, Jimenez E, Feria MD, Chavez M, Capote A, Perez N (2006) Biomass production of Cymbopogon citratus (DC.) Stapf. A medicinal plant in temporary immerson systems. In Vitro Cell Dev Biol Plant 42:298–300

    Article  Google Scholar 

  • Rahnama H, Hasanloo T, Shams MR, Sepehrifar R (2008) Silymarin production by hairy root culture of Silybium marianum (L.) Gaertn. Iran J Biotechnol 6:113–118

    CAS  Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharathine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3:9–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  PubMed  CAS  Google Scholar 

  • Rao R, Vijay BK, Amrutha D et al (2008) Effect of growth regulators, carbon source and cell aggregate size on berberine production from cell cultures of Tinospora cordifolia Miers. Curr Trends Biotechnol Pharm 2:269–276

    CAS  Google Scholar 

  • Ravishankar GA, Rao R (2000) Biotechnological production of phytopharmaceuticals. J Biochem Mol Biol Biophys 4:73–102

    CAS  Google Scholar 

  • Ravishankar GA, Suresh B, Giridhar P et al (2003) Biotechnological studies on capsicum for metabolite production and plant improvement. In: Amit DEK (ed) Capsicum: the genus Capsicum. Harwood Academic Publishers, Amsterdam, pp 96–128

    Google Scholar 

  • Roat C, Ramawat KG (2009) Elicitor induced accumulation of stilbenes in cell suspension cultures of Cayratia trifoliata (L.) Domin. Plant Biotechnol Rep 3:135–138

    Article  Google Scholar 

  • Salma U, Rahman MSM, Islam S, Haque N, Jubair TA, Haque AKMF, Mukti IJ (2008) The influence of different hormone concentration and combination on callus induction and regeneration of Rauvolfia serpentina (L.)Benth. Pak J Biol Sci 11:1638–1641

    Article  PubMed  CAS  Google Scholar 

  • Sanatombi K, Sharma GJ (2007) Micropropagation of Capsicum frutescens L. using axillary shoot explants. Sci Hortic 113:96–99

    Article  CAS  Google Scholar 

  • Santarem ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L and hypericin production. Braz J Plant Physiol 15:21–26

    Article  Google Scholar 

  • Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira MM (2002) Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Sci 162:981–987

    Article  CAS  Google Scholar 

  • SevĂłn N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Shalaka DK, Sandhya P (2009) Micropropagation and organogenesis in Adhatoda vasica for the estimation of vasine. Pharmacogn Mag 5:539–363

    Google Scholar 

  • Sharma A, Kumar V, Giridhar P, Ravishankar GA (2008) Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Plant Biotechnol J 11:84–89

    Google Scholar 

  • Shinde AN, Malpathak N, Fulzele DP (2009) Induced high frequency shoot regeneration and enhance a isoflavones production in Psoralea corylifolia. Rec Nat Prod 3:38–45

    CAS  Google Scholar 

  • Shohael AM, Murthy HN, Hahn EJ, Paek KY (2007) Methyl jasmonate induced overproduction of eleuthrosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Electron J Biotechnol 10:633–637

    Article  CAS  Google Scholar 

  • Shrivastava N, Patel T, Srivastava A (2006) Biosynthetic potential of in vitro grown callus cells of Cassia senna L. var. senna. Curr Sci 90:1472–1473

    CAS  Google Scholar 

  • Singh DN, Verma N, Raghnwanshi S et al (2006) Antifungal anthraquinone from Saprosma fragrans. Bioorg Med Chem Lett 16:4512–4514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skrzypek Z, Wysokinsku H (2003) Sterols and titerpenes in cell cultures of Hyssopus officinalis L. Ver Lag der Zeitschrift fur Naturforschung D 58:308–312

    CAS  Google Scholar 

  • Smith MAL, Kobayashi H, Gawienowski M, Briskin DP (2002) An in vitro approach to investigate medicinal chemical synthesis by three herbal plants. Plant Cell Tissue Organ Cult 70:105–111

    Article  CAS  Google Scholar 

  • Staniszewska I, Krolicka A, Mali E et al (2003) Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microbiol Technol 33:565–568

    Article  CAS  Google Scholar 

  • Strobel GA, Stierle A, van Kuijk JG (1992) Factors influencing the in vitro production of radiolabelledtaxol by Pacific yew, Taxus brevifolia. Plant Sci 84:65–74

    Article  CAS  Google Scholar 

  • Suffness M (1995) Taxol: science and applications. CRC Press, Boca Raton

    Google Scholar 

  • Sujanya S, Poornasri DB, Sai I (2008) In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci 33:113–120

    Article  PubMed  CAS  Google Scholar 

  • Taha HS, El-Rahman A, Fathalla M et al (2008) Successful application for enhancement and production of anthocyanin pigment from calli cultures of some ornamental plants. Aust J Basic Appl Sci 2:1148–1156

    CAS  Google Scholar 

  • Tal B, Rokem JS, Goldberg I (1983) Factors affecting growth and product formation in plant cells grown in continuous culture. Plant Cell Rep 2:219–222

    Article  PubMed  CAS  Google Scholar 

  • Tam WH, Constabel F, Kurz WG (1980) Codeine from cell suspension cultures of Papaver somniferum. Phytochemistry 19:486–487

    Article  CAS  Google Scholar 

  • Tanaka N, Takao M, Matsumoto T (2004) Vincamine production in multiple shoot culture derived from hairy roots of Vinca major. Plant Cell Tissue Organ Cult 41:61–64

    Article  CAS  Google Scholar 

  • Taniguchi S, Yazaki K, Yabu-Uchi R, Kawakami KY, Ito H, Hatano T, Yoshida T (2000) Galloylglucoses and riccionidin a in Rhus javanica adventitious root cultures. Phytochemistry 53(3):357–363

    Article  PubMed  CAS  Google Scholar 

  • Teramoto S, Komamine A (1988) L-DOPA production in plant cell cultures. In: Medicinal and aromatic plants I. Springer, Berlin, pp 209–224

    Google Scholar 

  • Thanh NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 67(2):197–201

    Article  PubMed  CAS  Google Scholar 

  • Tiwari KK, Trivedi M, Guang ZC et al (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 26:199–210

    Article  PubMed  CAS  Google Scholar 

  • Tumova L, Rimakova J, Tuma J, Dusck J (2006) Silybum marianum in vitro – flavolignan production. Plant Cell Environ 52:454–458

    CAS  Google Scholar 

  • Varindra S, Saikia R, Sandhu S, Gosal SS (2000) Effect of nutrient limitation on capsaicin production in callus culture derived from pericarp and seedling explants of Capsicum annum L. varieties. Plant Tissue Cult 10:9–16

    Google Scholar 

  • Verma PC, Singh D, Rahman L, Gupta MM, Banerjee S (2002) In vitro studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbag in yeilding hairy root cultures. J Plant Physiol 159:547–552

    Article  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Vijaya SN, Udayasri PV, Aswani KY et al (2010) Advancements in the production of secondary metabolites. J Nat Prod 3:112–123

    Google Scholar 

  • Vineesh VR, Fijesh PV, Jelly LC et al (2007) In vitro production of camptothecin (an anticancer drug) through albino plants of Ophiorrhiza rugosa var. decumbens. Curr Sci 92:1216–1219

    CAS  Google Scholar 

  • Vinterhalter B, Jankovic T, Sovikin L et al (2008) Propagation and xanthone content of Gentianella austiaca shoot cultures. Plant Cell Tissue Organ Cult 94:329–335

    Article  Google Scholar 

  • Wagiah ME, Alam G, Wiryowidagdo S, Attia K (2008) Improved production of the indole alkaloid cathin-6-one from cell suspension cultures of Brucea javanica (L.) Merr. Ind J Sci Technol 1:1–6

    Google Scholar 

  • Wu J, Lin L (2002) Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 59:51–57

    Article  CAS  Google Scholar 

  • Xu H, Kim YK, Suh SY et al (2008) Deoursin production from hariy root culture of Angelica gigas. J Korea Soc Appl Biol Chem 51:349–351

    Article  CAS  Google Scholar 

  • Yoshikawa T, Furuya T (1985) Morphinan alkaloid production by tissues differentiated from cultured cells of Papaver somniferum. Planta Med 2:110–113

    Article  Google Scholar 

  • Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99:7968–7973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyljasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhu W, Hu Q (2001) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzym Microb Technol 28:673–681

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  PubMed  CAS  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87(1):137–144

    Article  PubMed  CAS  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Plant cells. Springer, Berlin, pp 1–26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, B., Raina, A., Khan, S. (2019). Secondary Metabolite Production in Medicinal Plants Using Tissue Cultures. In: Egamberdieva, D., Tiezzi, A. (eds) Medically Important Plant Biomes: Source of Secondary Metabolites. Microorganisms for Sustainability, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-13-9566-6_7

Download citation

Publish with us

Policies and ethics