Skip to main content

Abstract

A heat pipe substrate module diffused heat by phase change was designed, and transient thermal properties of the vapor chamber were analyzed. The time of the vapor chamber to get steady-state mainly depends on the heat transfer coefficient. As the heat transfer coefficient increases, the time to reach steady state is shorter. Reducing the temperature drop of the vapor chamber core portion can effectively improve thermal performance for the vapor chamber. The transient temperature rise of vapor chamber tube core is smaller than that of the pure copper substrate module and the air heat pipe substrate module with fixed thermal resistance, it is beneficial to overcome the power “swell” and improve thermal shock resistance of the power device. The thermal resistance of the heat sink accounts for more than 70% of the thermal resistance of the entire heat dissipation module. The transient thermal performance of the vapor chamber and the power module integrated packaged can ensure thermal diffusion efficient and smooth operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, K., et al.: Experimental study of energy saving performances in chip cooling by using heat sink with embedded heat pipe. Energy Procedia 105, 5160–5165 (2017)

    Article  Google Scholar 

  2. Jaroslaw, L., et al.: Measurements and simulations of transient characteristics of heat pipes. Microelectron. Reliab. 46, 109–115 (2006)

    Article  Google Scholar 

  3. Kim, K.S., et al.: Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 23(9), 1137–1144 (2003)

    Article  Google Scholar 

  4. Guo, L.: Development of heat dissipation in electronics components. Cryog. Supercond. 42(2), 62–66 (2014)

    Google Scholar 

  5. Zhang, M., Liu, Z.L., Wang, C.: The integrated design of heat pipe spreader and heat sink. J. Eng. Thermophys. 31(5), 853–856 (2010)

    Google Scholar 

  6. Zhang, L.H., et al.: Thermal characteristic of a novel flat plate heat pipe for hybrid integrated power electronic module. Acat Electronica Sin. 37(8), 1848–1853 (2009)

    Google Scholar 

  7. Chen, T.S., Chen, K.H., Wang, C.: A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers. Appl. Therm. Eng. 26, 2087–2094 (2006)

    Article  Google Scholar 

  8. Rahman, M.L., et al.: Effect of fin and insert on the performance characteristics of close loop pulsating heat pipe (CLPHP). Procardia Eng. 05, 129–136 (2015)

    Article  Google Scholar 

  9. Tran, T., et al.: Experimental investigation on the feasibility of heat pipe cooling. Appl. Therm. Eng. 63(2), 551–558 (2014)

    Article  Google Scholar 

  10. Take, K., Webb, L.R.: Thermal performance of integrated plate heat pipe with a heat spreader. J. Electron. Packag. 123 (2001)

    Article  Google Scholar 

  11. Sauciuc, I., Chrysler, G., Mahajan, R., Prasher, R.: Spreading in the heat sink base: phase change systems or solid metals. IEEE Trans. Compon. Packag. Technol. 25 (2008)

    Article  Google Scholar 

  12. Wei, J., Cha, A., Copeland, D.: Measurement of vapor chamber performance. In: IEEE, Semi-Therm Symposium (2013)

    Google Scholar 

  13. Ivanova, M., Avenas, Y., et al.: Heat pipe integrated in direct bonded copper technology for cooling of power electronics packaging. IEEE Trans. Power Electron. 21(6) (2016)

    Google Scholar 

  14. Gao, M., Cao, Y.: Flat and U-shaped heat spreaders for high-power electronics. Heat Transfer Eng. 24(3), 57–65 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by the National Natural Science Foundation of China (Grant No. 51504188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Zhang, Y., Wang, P., Guo, Y. (2020). Analysis on Transient Thermal Behaviors of the Novel Vapor Chamber. In: Wang, Z., Zhu, Y., Wang, F., Wang, P., Shen, C., Liu, J. (eds) Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019). ISHVAC 2019. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-9524-6_38

Download citation

Publish with us

Policies and ethics