Advertisement

The Impacts of Associative Memory Cells on Pathology

  • Jin-Hui Wang
Chapter
  • 318 Downloads

Abstract

Neurological diseases and psychological disorders with cognition and mood impairment are more or less accompanied by memory deficits, since the capability and efficiency of normal cognitions, emotion, and behaviors are influenced by memory capacity. In psychiatric diseases, fear memory induced by acute severe stress is coupled with anxiety, the accumulated memories to negative outcomes induced by chronic mild stress may lead to anhedonia and low self-esteem in major depression, and weird memory is associated with schizophrenia. Memory deficits are also associated with neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The etiology and pathogenesis of memory deficits in neurological and psychiatric diseases remain unknown. As memory-relevant cognition and behaviors are based on the number and functional state of associative memory cells, it is hypothesized that these disease-associated memory deficits may be caused by pathological alternation in associative memory cells. Many genes and proteins in neurons are believed to result in these neurological and psychiatric diseases, and certain molecules accumulated in extracellular spaces are thought to deteriorate neuron encoding and synapse transmission. Associative memory cells are neuronal in nature prior to their recruitment for basic memory units; these intracellular and extracellular molecules that impair neurons may influence synapse innervations, synapse transmission efficiency, and spike-encoding capability at these associative memory cells and in turn take them to be abnormal. Pathological alternation in the synapse innervation, structural identity, and functional state of associative memory cells eventually results in memory deficits in these neurological and psychiatric diseases. Although this hypothesis needs to be tested experimentally, pathological alternations in neurons can be cited to associative memory cells. Here, the dysfunction of associative memory cells for memory deficits is discussed.

Keywords

Memory deficit Memory cell impairment Anxiety Depression Schizophrenia and neurodegeneration 

References

  1. 1.
    Kandel ER, Pittenger C. The past, the future and the biology of memory storage. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1392):2027–52.CrossRefGoogle Scholar
  2. 2.
    Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9(320):1–12.Google Scholar
  3. 3.
    Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wasserman EA, Miller RR. What’s elementary about associative learning? Annu Rev Psychol. 1997;48:573–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Beard RL. Trust and memory: organizational strategies, institutional conditions and trust negotiations in specialty clinics for Alzheimer’s disease. Cult Med Psychiatry. 2008;32(1):11–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Coutellier L, Usdin TB. Enhanced long-term fear memory and increased anxiety and depression-like behavior after exposure to an aversive event in mice lacking TIP39 signaling. Behav Brain Res. 2011;222(1):265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Desmedt A, Marighetto A, Piazza PV. Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry. 2015;78(5):290–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Orsini CA, Maren S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev. 2012;36(7):1773–802.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Parsons RG, Ressler KJ. Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci. 2013;16(2):146–53.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ramanan S, Kumar D. Prospective memory in Parkinson’s disease: a meta-analysis. J Int Neuropsychol Soc. 2013;19(10):1109–18.PubMedCrossRefGoogle Scholar
  11. 11.
    Ramsey NF, et al. Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain. 2002;125(Pt 8):1793–807.PubMedCrossRefGoogle Scholar
  12. 12.
    Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28(1):7–12.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25(1):1–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotter D, et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002;51(5):377–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu B, Feng J, Wang J-H. Protein kinase C is essential for kainate-induced anxiety-related behavior and glutamatergic synapse upregulation in prelimbic cortex. CNS Neurosci Ther. 2014;20:982–90.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lloyd KG, et al. The gabaergic hypothesis of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 1989;13(3–4):341–51.CrossRefGoogle Scholar
  17. 17.
    Ma K, et al. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl Psychiatry. 2016;6(e910):1–10.Google Scholar
  18. 18.
    Maciag D, et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry. 2010;67(5):465–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu A, Cui S, Wang J. Incoordination among subcellular compartments is associated to depression-like behavior induced by chronic mild stress. Int J Neuropsychopharmacol. 2015;19(5):pyv122.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Rajkowska G, et al. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32(2):471–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang F, et al. mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012;5(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhu Z, et al. GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression. Oncotarget. 2017;8(22):35933–45.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.Google Scholar
  25. 25.
    Lei Z, et al. Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Front Cell Neurosci. 2017;11(316):1–11.Google Scholar
  26. 26.
    Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang J-H, et al. Both glutamatergic and gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(3):supplement 481a.CrossRefGoogle Scholar
  28. 28.
    Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.Google Scholar
  29. 29.
    Feng J, et al. Cell-specific plasticity associated with integrative memory of triple sensory signals in the barrel cortex. Oncotarget. 2018;9(57):30962–78.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.Google Scholar
  31. 31.
    Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhao X, et al. Coordinated plasticity among glutamatergic and GABAergic neurons and synapses in the barrel cortex is correlated to learning efficiency. Front Cell Neurosci. 2017;11(221):1–12.Google Scholar
  33. 33.
    Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson’s disease: a review. Cortex. 2019;113:191–209.PubMedCrossRefGoogle Scholar
  34. 34.
    Kahle PJ, et al. Physiology and pathophysiology of alpha-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann N Y Acad Sci. 2000;920:33–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Kulisevsky J. Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson’s disease. Drugs Aging. 2000;16(5):365–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Lambon Ralph MA, et al. Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review. J Neurol Neurosurg Psychiatry. 2001;70(2):149–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Leentjens AF. The role of dopamine agonists in the treatment of depression in patients with Parkinson’s disease: a systematic review. Drugs. 2011;71(3):273–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Roy DS, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature. 2016;531(7595):508–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tippett LJ, Grossman M, Farah MJ. The semantic memory impairment of Alzheimer’s disease: category-specific? Cortex. 1996;32(1):143–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Fu H, et al. Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron. 2017;93(3):533–541 e5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Giacobini E, Becker RE. One hundred years after discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis. 2007;12:37–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Jakobsen LD, Jensen PH. Parkinson’s disease: alpha-synuclein and parkin in protein aggregation and the reversal of unfolded protein stress. Methods Mol Biol. 2003;232:57–66.PubMedGoogle Scholar
  43. 43.
    Laferla FM, Green KN, Oddo S. Intracellular amyloid-b in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsuyama F, et al. Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dendritic spine shortening in Alzheimer’s disease. Ital J Anat Embryol. 2009;114(2–3):109–20.PubMedGoogle Scholar
  45. 45.
    Sisodia SS, George-Hyslop PH. r-secretase, notch, Ab and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci. 2002;3:281–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang J-H. Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003;60(1–2):53–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Res. 2019;8(457):1–28.Google Scholar
  49. 49.
    Henke K. A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci. 2010;11(7):523–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Reder LM, Park H, Kieffaber PD. Memory systems do not divide on consciousness: reinterpreting memory in terms of activation and binding. Psychol Bull. 2009;135(1):23–49.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Raffone A, Srinivasan N, van Leeuwen C. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1641):20130215.CrossRefGoogle Scholar
  52. 52.
    Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.Google Scholar
  53. 53.
    Nestler EJ. Cellular basis of memory for addiction. Dialogues Clin Neurosci. 2013;15(4):431–43.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Elizalde N, et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology. 2008;199(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–97.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sun X, et al. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:150–65.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wang J-H, Lu W. Molecular profiles in the brain are involved in fear memory induced by physical and psychological stress. Soc Neurosci. 2018;425.19(425):III61.Google Scholar
  58. 58.
    Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484(7394):381–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Si Y, et al. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet. 2018;177(6):563–79.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ramirez S, et al. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015;522(7556):335–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Diamond DM, et al. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007;2007:60803.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nat Rev Neurosci. 2006;7(1):54–64.PubMedCrossRefGoogle Scholar
  63. 63.
    Lei Z, Liu B, Wang J-H. Reward memory relieves anxiety-related behavior through synaptic strengthening and protein kinase C in dentate gyrus. Hippocampus. 2016;26(4):502–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Coles ME, Heimberg RG. Memory biases in the anxiety disorders: current status. Clin Psychol Rev. 2002;22(4):587–627.PubMedCrossRefGoogle Scholar
  65. 65.
    Becker ES, et al. Explicit memory in anxiety disorders. J Abnorm Psychol. 1999;108(1):153–63.PubMedCrossRefGoogle Scholar
  66. 66.
    McNally RJ. Memory and anxiety disorders. Philos Trans R Soc Lond Ser B Biol Sci. 1997;352(1362):1755–9.CrossRefGoogle Scholar
  67. 67.
    Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci. 2007;11(7):307–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Cameron OG. The differential diagnosis of anxiety. Psychiatric and medical disorders. Psychiatr Clin N Am. 1985;8(1):3–23.CrossRefGoogle Scholar
  69. 69.
    Rickeles K, Rynn M. Overview and clinical presentation of generalized anxiety disorder. Psychiatr Clin N Am. 2001;24(1):1–17.CrossRefGoogle Scholar
  70. 70.
    Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci. 2003;985:389–410.PubMedCrossRefGoogle Scholar
  71. 71.
    Stein MB, Stein DJ. Social anxiety disorders. Lancet. 2008;371(9618):1115–25.PubMedCrossRefGoogle Scholar
  72. 72.
    Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.PubMedCrossRefGoogle Scholar
  73. 73.
    Cunnigham MG, et al. Amygdala GABAergic-rich neural grafts attenuate anxiety-like behavior in rats. Behav Brain Res. 2009;205(1):146–53.CrossRefGoogle Scholar
  74. 74.
    Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann N Y Acad Sci. 2003;985:370–88.PubMedCrossRefGoogle Scholar
  75. 75.
    Bremner JD. Brain imaging in anxiety disorders. Expert Rev Neurother. 2004;4(2):275–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Davidson RJ. Anxiety and affective style: one of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51(1):68–80.PubMedCrossRefGoogle Scholar
  77. 77.
    Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 1994;17(5):208–14.PubMedCrossRefGoogle Scholar
  78. 78.
    Garrett A, Chang K. The role of the amygdala in bipolar disorder development. Dev Psychopathol. 2008;20(4):1285–96.PubMedCrossRefGoogle Scholar
  79. 79.
    LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.PubMedCrossRefGoogle Scholar
  80. 80.
    Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression and extinction of conditioned fear. Physiol Rev. 2010;90(2):419–63.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Neugebauer V, et al. The amygdala and persistent pain. Neuroscientist. 2004;10(3):221–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Roozendaal B, McEwen BS, Chattarji S. Stress, memory and amygdala. Nat Rev Neurosci. 2009;10(6):423–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Girardeau G, Inema I, Buzsaki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci. 2017;20(11):1634–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Hubner C, et al. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci. 2014;8:64.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Amano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010;13(4):489–95.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    DuBios DW, et al. Distinct functional characteristics of the lateral/basolateral amygdala GABAergic system in C57BL/6J and DBA/2J mice. J Pharmacol Exp Ther. 2006;318(2):629–40.CrossRefGoogle Scholar
  87. 87.
    Ehrlich I, et al. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62:757–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Bergink V, van Megen HJ, Westenberg HG. Glutamate and anxiety. Eur Neuropsychopharmacol. 2004;14(3):175–83.PubMedCrossRefGoogle Scholar
  89. 89.
    Chaki S, Okubo T, Sekiguchi Y. Non-monoamine-based approach for the treatment of depression and anxiety disorders. Recent Pat CNS Drug Discov. 2006;1(1):1–27.PubMedCrossRefGoogle Scholar
  90. 90.
    Cortese BM, Phan KL. The role of glutamate in anxiety and related disorders. CNS Spectr. 2005;10(10):820–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx. 2006;3(1):57–68.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bliss TVP, Lynch MA. Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In: Landfield PW, Deadwyler SA, editors. Long-term potentiation: from biophysics to behavior. New York: Alan R. Liss; 1988. p. 3–72.Google Scholar
  93. 93.
    Tryon WW, McKay D. Memory modification as an outcome variable in anxiety disorder treatment. J Anxiety Disord. 2009;23(4):546–56.PubMedCrossRefGoogle Scholar
  94. 94.
    Amini F, et al. Affect, attachment, memory: contributions toward psychobiologic integration. Psychiatry. 1996;59(3):213–39.PubMedCrossRefGoogle Scholar
  95. 95.
    Blaney PH. Affect and memory: a review. Psychol Bull. 1986;99(2):229–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Dere E, Pause BM, Pietrowsky R. Emotion and episodic memory in neuropsychiatric disorders. Behav Brain Res. 2010;215(2):162–71.PubMedCrossRefGoogle Scholar
  97. 97.
    Derouesne C. Memory and affect. Rev Neurol (Paris). 2000;156(8–9):732–7.Google Scholar
  98. 98.
    Gillihan SJ, Kessler J, Farah MJ. Memories affect mood: evidence from covert experimental assignment to positive, neutral, and negative memory recall. Acta Psychol. 2007;125(2):144–54.CrossRefGoogle Scholar
  99. 99.
    Aldao A, et al. Adaptive and maladaptive emotion regulation strategies: interactive effects during CBT for social anxiety disorder. J Anxiety Disord. 2014;28(4):382–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Brewin CR. Understanding cognitive behaviour therapy: a retrieval competition account. Behav Res Ther. 2006;44(6):765–84.PubMedCrossRefGoogle Scholar
  101. 101.
    Cuijpers P, et al. Psychological treatment of generalized anxiety disorder: a meta-analysis. Clin Psychol Rev. 2014;34(2):130–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Rusting CL, DeHart T. Retrieving positive memories to regulate negative mood: consequences for mood-congruent memory. J Pers Soc Psychol. 2000;78(4):737–52.PubMedCrossRefGoogle Scholar
  103. 103.
    Hamilton JP, Gotlib IH. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol Psychiatry. 2008;63(12):1155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Paolino RM, Levy HM. Amnesia produced by spreading depression and ECS: evidence for time-dependent memory trace localization. Science. 1971;172(3984):746–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Berton O, Hahn CG, Thase ME. Are we getting closer to valid translational models for major depression? Science. 2012;338(6103):75–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 2008;11(8):1169–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(3):435–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Strekalova T, et al. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct. 2011;7:9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rohleder N, Wolf JM, Wolf OT. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev. 2010;35(1):104–14.PubMedCrossRefGoogle Scholar
  110. 110.
    Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol. 2011;23(6):730–7.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bennett P, et al. Psychological factors associated with emotional responses to receiving genetic risk information. J Genet Couns. 2008;17(3):234–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Duman CH. Models of depression. Vitam Horm. 2010;82:1–21.PubMedCrossRefGoogle Scholar
  113. 113.
    Lin LC, Sibille E. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol. 2013;4:110.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.PubMedCrossRefGoogle Scholar
  115. 115.
    Sandi C, Haller J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci. 2015;16(5):290–304.PubMedCrossRefGoogle Scholar
  116. 116.
    Ascoli GA, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.PubMedCrossRefGoogle Scholar
  117. 117.
    Buzsaki G, et al. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 2004;27(4):186–93.PubMedCrossRefGoogle Scholar
  118. 118.
    Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Thompson SM, et al. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38(5):279–94.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bajbouj M, et al. Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol Psychiatry. 2006;59(5):395–400.PubMedCrossRefGoogle Scholar
  121. 121.
    Croarkin PE, Levinson AJ, Daskalakis ZJ. Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev. 2011;35(3):818–25.PubMedCrossRefGoogle Scholar
  122. 122.
    Hasler G, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64(2):193–200.PubMedCrossRefGoogle Scholar
  123. 123.
    Hettema JM, et al. Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry. 2006;11(8):752–62.PubMedCrossRefGoogle Scholar
  124. 124.
    Karolewicz B, et al. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13(4):411–20.PubMedCrossRefGoogle Scholar
  125. 125.
    Khundakar AA, et al. Cellular pathology within the anterior cingulate cortex of patients with late-life depression: a morphometric study. Psychiatry Res. 2011;194(2):184–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Levinson AJ, et al. Evidence of cortical inhibitory deficits in major depressive disorder. Biol Psychiatry. 2010;67(5):458–64.PubMedCrossRefGoogle Scholar
  127. 127.
    Plante DT, et al. Reduced gamma-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder? Neuropsychopharmacology. 2012;37(6):1548–57.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Price RB, et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009;65(9):792–800.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Veeraiah P, et al. Dysfunctional glutamatergic and gamma-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression. Biol Psychiatry. 2014;76(3):231–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Ma K, et al. Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex. PLoS One. 2016;11(7):e0159093.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Shen M, Song Z, Wang JH. microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology (Berl). 2019;236(7):2119–42.CrossRefGoogle Scholar
  132. 132.
    Camp NJ, Cannon-Albright LA. Dissecting the genetic etiology of major depressive disorder using linkage analysis. Trends Mol Med. 2005;11(3):138–44.PubMedCrossRefGoogle Scholar
  133. 133.
    Hamilton JP, Chen MC, Gotlib IH. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 2013;52:4–11.PubMedCrossRefGoogle Scholar
  134. 134.
    Jabbi M, et al. Investigating the molecular basis of major depressive disorder etiology: a functional convergent genetic approach. Ann N Y Acad Sci. 2008;1148:42–56.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Keers R, Uher R. Gene-environment interaction in major depression and antidepressant treatment response. Curr Psychiatry Rep. 2012;14(2):129–37.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatr. 2013;58(2):76–83.CrossRefGoogle Scholar
  137. 137.
    Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12(6):539–46.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Moylan S, et al. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. 2013;18(5):595–606.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Wilde A, et al. Implications of the use of genetic tests in psychiatry, with a focus on major depressive disorder: a review. Depress Anxiety. 2013;30(3):267–75.PubMedCrossRefGoogle Scholar
  140. 140.
    Cuijpers P, et al. Efficacy of cognitive-behavioural therapy and other psychological treatments for adult depression: meta-analytic study of publication bias. Br J Psychiatry. 2010;196(3):173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Fava GA, et al. Well-being therapy in depression: new insights into the role of psychological well-being in the clinical process. Depress Anxiety. 2017;34(9):801–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Lewis DA. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol. 2014;26:22–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Royston MC, Roberts GW. Schizophrenia. When neurons go astray. Curr Biol. 1995;5(4):342–4.PubMedCrossRefGoogle Scholar
  144. 144.
    Callicott JH, et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18(3):186–96.PubMedCrossRefGoogle Scholar
  145. 145.
    Gordon R, Silverstein ML, Harrow M. Associative thinking in schizophrenia: a contextualist approach. J Clin Psychol. 1982;38(4):684–96.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Tek C, et al. Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry. 2002;59(2):146–53.PubMedCrossRefGoogle Scholar
  147. 147.
    Bachneff SA. Positron emission tomography and magnetic resonance imaging: a review and a local circuit neurons hypo(dys)function hypothesis of schizophrenia. Biol Psychiatry. 1991;30(9):857–86.PubMedCrossRefGoogle Scholar
  148. 148.
    Lisman JE, et al. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatry. 2010;68(1):17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Suh J, et al. Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia. Neuron. 2013;80(2):484–93.PubMedCrossRefGoogle Scholar
  150. 150.
    Weinberger DR, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry. 2001;50(11):825–44.PubMedCrossRefGoogle Scholar
  151. 151.
    Finlay JM. Mesoprefrontal dopamine neurons and schizophrenia: role of developmental abnormalities. Schizophr Bull. 2001;27(3):431–42.PubMedCrossRefGoogle Scholar
  152. 152.
    Bertolino A. Dysregulation of dopamine and pathology of prefrontal neurons: neuroimaging studies in schizophrenia and related animal models. Epidemiol Psichiatr Soc. 1999;8(4):248–54.PubMedCrossRefGoogle Scholar
  153. 153.
    Veselinovic T, Paulzen M, Grunder G. Cariprazine, a new, orally active dopamine D2/3 receptor partial agonist for the treatment of schizophrenia, bipolar mania and depression. Expert Rev Neurother. 2013;13(11):1141–59.PubMedCrossRefGoogle Scholar
  154. 154.
    Jiang Z, Cowell RM, Nakazawa K. Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Front Behav Neurosci. 2013;7:116.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Keverne EB. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull. 1999;48(5):467–73.PubMedCrossRefGoogle Scholar
  156. 156.
    Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.PubMedCrossRefGoogle Scholar
  157. 157.
    Volk DW, et al. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex. 2002;12(10):1063–70.PubMedCrossRefGoogle Scholar
  158. 158.
    Miller R, Chouinard G. Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia. Biol Psychiatry. 1993;34(10):713–38.PubMedCrossRefGoogle Scholar
  159. 159.
    Yeomans JS. Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology. 1995;12(1):3–16.PubMedCrossRefGoogle Scholar
  160. 160.
    Liu Y, et al. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget. 2017;8(68):112401–16.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch. 2010;460(2):505–23.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Brenner HD, Pfammatter M. Psychological therapy in schizophrenia: what is the evidence? Acta Psychiatr Scand Suppl. 2000;102(407):74–7.CrossRefGoogle Scholar
  163. 163.
    Mueller DR, Roder V. Integrated psychological therapy for schizophrenia patients. Expert Rev Neurother. 2007;7(1):1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Roder V, Mueller DR, Schmidt SJ. Effectiveness of integrated psychological therapy (IPT) for schizophrenia patients: a research update. Schizophr Bull. 2011;37(Suppl 2):S71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Shattock L, et al. Therapeutic alliance in psychological therapy for people with schizophrenia and related psychoses: a systematic review. Clin Psychol Psychother. 2018;25(1):e60–85.PubMedCrossRefGoogle Scholar
  166. 166.
    Blank T, Nijholt I, Spiess J. Treatment strategies of age-related memory dysfunction by modulation of neuronal plasticity. Mini Rev Med Chem. 2007;7(1):55–64.PubMedCrossRefGoogle Scholar
  167. 167.
    Maillet D, Rajah MN. Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis. Neurosci Biobehav Rev. 2014;45:246–57.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang J-H, Kelly PT. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (Lond). 2001;533(2):407–22.CrossRefGoogle Scholar
  169. 169.
    Zhang M, et al. Calcium signal-dependent plasticity of neuronal excitability developed postnatally. J Neurobiol. 2004;61:277–87.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Giray EF, et al. The incidence of eidetic imagery as a function of age. Child Dev. 1976;47(4):1207–10.PubMedCrossRefGoogle Scholar
  171. 171.
    Miller E. The affective nature of illusion and hallucination. Part Ii: eidetic imagery. J Neurol Psychopathol. 1931;12(45):1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wasinger K, Zelhart PF, Markley RP. Memory for random shapes and eidetic ability. Percept Mot Skills. 1982;55(3 Pt 2):1076–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Roy DS, et al. Silent memory engrams as the basis for retrograde amnesia. Proc Natl Acad Sci U S A. 2017;114(46):E9972–9.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Martorell AJ, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell. 2019;176(10):1–16.Google Scholar
  175. 175.
    Ryan TJ, et al. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007–13.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Eustache F, et al. Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit? J Neurol Neurosurg Psychiatry. 1999;66(2):148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Guillery-Girard B, et al. Long-term memory following transient global amnesia: an investigation of episodic and semantic memory. Acta Neurol Scand. 2006;114(5):329–33.PubMedCrossRefGoogle Scholar
  178. 178.
    Cooper RA, et al. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cereb Cortex. 2017;27(2):888–902.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Gaigg SB, Bowler DM, Gardiner JM. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task. Memory. 2014;22(6):669–78.PubMedCrossRefGoogle Scholar
  180. 180.
    Wojcik DZ, Moulin CJ, Souchay C. Metamemory in children with autism: exploring “feeling-of-knowing” in episodic and semantic memory. Neuropsychology. 2013;27(1):19–27.PubMedCrossRefGoogle Scholar
  181. 181.
    Gron G, Riepe MW. Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. Am J Geriatr Psychiatry. 2004;12(6):648–52.PubMedCrossRefGoogle Scholar
  182. 182.
    Tromp D, et al. Episodic memory in normal aging and Alzheimer disease: insights from imaging and behavioral studies. Ageing Res Rev. 2015;24(Pt B):232–62.PubMedCrossRefGoogle Scholar
  183. 183.
    Ostergaard AL. Episodic, semantic and procedural memory in a case of amnesia at an early age. Neuropsychologia. 1987;25(2):341–57.PubMedCrossRefGoogle Scholar
  184. 184.
    Cohen G, Johnston R, Plunkett K. Exploring cognition: damaged brains and neural networks. In: Cohen G, editor. Exploring cognition: damaged brains and neural networks. Erlbaum: Psychology Press; 2002.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jin-Hui Wang
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations