Associative Memory Cells in Physiological Psychology

  • Jin-Hui Wang


Associative memory and memory-related cognition have been extensively studied in psychology. Various memory patterns and theoretical models have been classified based on memory contents, content sources, memory accuracy, and consciousness states. Cellular mechanisms underlying these patterns and models are largely unknown since the experiments to reveal cellular processes cannot be studied in human beings up to now. The comprehensive cellular architectures of associative memory and memory-related behaviors may be figured out based on the profiles studied in rodents in order to understand memory regulation and to develop therapeutic strategies for memory deficit. Based on the working principles of associative memory cells and their networks in rodents, the author intends to provide some cellular architectures for explaining these patterns and theoretical models of associative memory. As discussed in Chap.  2, associative learning is a major approach in information acquisition. Associative memory is classified into distinct patterns and terms, such as explicit versus implicit memory, episodic versus semantic memory, perceptual versus working memory, intramodal versus cross-modal memory, and eidetic versus false memory. Furthermore, memory-relevant cognitions and emotions are complicated. Although associative thinking, logical reasoning, computation, imagination, pleasure, and fear are well defined, the expression of these processes is mixed in nature. In fact, these memory patterns and processes share certain common features, such as information-integrative memory, reciprocal memory retrieval, activity-dependent strengthening, and memory-unit linked cognitions. The synaptic and neuronal plasticity in a single pathway is not matching these features of memory and cognitions. Instead, associative memory cells and their featured interconnections may constitute the foundation of the memory patterns and memory-relevant behaviors. In this chapter, the potential links between associative memory cells in memory traces and these types of memories will be discussed.


Psychology Physiology Associative memory cells Memory Thinking and reasoning 


  1. 1.
    Eichenbaum H. Still searching for the engram. Learn Behav. 2016;44(3):209–22.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lisman J, et al. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci. 2018;21(3):309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McGaugh JL. Memory – a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Poo MM, et al. What is memory? The present state of the engram. BMC Biol. 2016;14:40.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Squire LR, Wixted JT, Clark RE. Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007;8(11):872–83.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tonegawa S, et al. Memory engram storage and retrieval. Curr Opin Neurobiol. 2015;35:101–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Squire LR, Zola SM. Episodic memory, semantic memory, and amnesia. Hippocampus. 1998;8(3):205–11.CrossRefGoogle Scholar
  12. 12.
    Tulving E. Multiple memory systems and consciousness. Hum Neurobiol. 1987;6(2):67–80.Google Scholar
  13. 13.
    Wood F. Focal and diffuse memory activation assessed by localized indicators of CNS metabolism: the semantic-episodic memory distinction. Hum Neurobiol. 1987;6(2):141–51.Google Scholar
  14. 14.
    Kim JI, Humphreys GW. Working memory, perceptual priming, and the perception of hierarchical forms: opposite effects of priming and working memory without memory refreshing. Atten Percept Psychophys. 2010;72(6):1533–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Res. 2019;8(457):1–28.Google Scholar
  16. 16.
    Wasinger K, Zelhart PF, Markley RP. Memory for random shapes and eidetic ability. Percept Mot Skills. 1982;55(3 Pt 2):1076–8.CrossRefGoogle Scholar
  17. 17.
    Bookbinder SH, Brainerd CJ. Emotion and false memory: the context-content paradox. Psychol Bull. 2016;142(12):1315–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Byrne JH. Learning and memory: basic mechanisms. In: Square LR, et al., editors. Fundament neuroscience. 2nd ed. Amsterdam: Academic; 2003. p. 1275–98.Google Scholar
  19. 19.
    Kandel ER. Nerve cells and behavior. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 19–35.Google Scholar
  20. 20.
    Wasserman EA, Miller RR. What’s elementary about associative learning? Annu Rev Psychol. 1997;48:573–607.CrossRefGoogle Scholar
  21. 21.
    Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Agra G, et al. Analysis of the concept of meaningful learning in light of the Ausubel’s theory. Rev Bras Enferm. 2019;72(1):248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Baars BJ, Gage NM. In: Baars BJ, Gage NM, editors. Cognition, brain, and consciousness: introduction to cognitive neuroscience. London: Elsevier Ltd; 2007.Google Scholar
  25. 25.
    Bolhuis JJ, Honey RC. Imprinting, learning and development: from behaviour to brain and back. Trends Neurosci. 1998;21(7):306–11.PubMedGoogle Scholar
  26. 26.
    Cadorin L, et al. An integrative review of the characteristics of meaningful learning in healthcare professionals to enlighten educational practices in health care. Nurs Open. 2014;1(1):3–14.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cake MA. Deep dissection: motivating students beyond rote learning in veterinary anatomy. J Vet Med Educ. 2006;33(2):266–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Carcea I, Froemke RC. Biological mechanisms for observational learning. Curr Opin Neurobiol. 2019;54:178–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Cardoso-Leite P, Bavelier D. Video game play, attention, and learning: how to shape the development of attention and influence learning? Curr Opin Neurol. 2014;27(2):185–91.PubMedGoogle Scholar
  30. 30.
    Eiriksdottir E, Catrambone R. Procedural instructions, principles, and examples: how to structure instructions for procedural tasks to enhance performance, learning, and transfer. Hum Factors. 2011;53(6):749–70.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Frenois F, Le Moine C, Cador M. The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci. 2005;16(3):255–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Gewirtz JL. Conditional responding as a paradigm for observational, imitative learning and vicarious-reinforcement. Adv Child Dev Behav. 1971;6:273–304.PubMedCrossRefGoogle Scholar
  33. 33.
    Giannini AJ, Giannini JN, Condon M. Use of tangential visual symbols to increase the long-term learning process: applications of linkage in teaching pharmacological principles of addiction. J Clin Pharmacol. 2000;40(7):708–12.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hedges JH, et al. Play, attention, and learning: how do play and timing shape the development of attention and influence classroom learning? Ann N Y Acad Sci. 2013;1292:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hill HM, Dietrich S, Cappiello B. Learning to play: a review and theoretical investigation of the developmental mechanisms and functions of cetacean play. Learn Behav. 2017;45(4):335–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Horn G. Imprinting, learning, and memory. Behav Neurosci. 1986;100(6):825–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Letzkus JJ, Wolff SB, Luthi A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron. 2015;88(2):264–76.PubMedCrossRefGoogle Scholar
  38. 38.
    McLaughlin B. “Intentional” and “incidental” learning in human subjects: the role of instructions to learn and motivation. Psychol Bull. 1965;63:359–76.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pearce MT. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Ann N Y Acad Sci. 2018.Google Scholar
  40. 40.
    Suzuki WA. Associative learning signals in the brain. Prog Brain Res. 2008;169:305–20.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zentall TR. Perspectives on observational learning in animals. J Comp Psychol. 2012;126(2):114–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A. 1996;93(24):13515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.CrossRefGoogle Scholar
  44. 44.
    Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.Google Scholar
  45. 45.
    Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.Google Scholar
  46. 46.
    Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang JH, et al. Upregulation of glutamatergic receptor-channels is associated with cross-modal reflexes encoded in barrel cortex and piriform cortex. Biophys J. 2014;106(2):supplement 191a.CrossRefGoogle Scholar
  49. 49.
    Wang J-H, et al. Both glutamatergic and Gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(3):supplement 191a.Google Scholar
  50. 50.
    Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.Google Scholar
  51. 51.
    Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.Google Scholar
  52. 52.
    Wang J-H, et al. Prefrontal cortical neurons are recruited as secondary associative memory cells for associative memory and cognition. Biophys J. 2018;114(3):155a.CrossRefGoogle Scholar
  53. 53.
    Wang JH, et al. Secondary associative memory cells and their plasticity in the prefrontal cortex. Biophys J. 2019;116(3):427a.CrossRefGoogle Scholar
  54. 54.
    Squire LR. Mechanisms of memory. Science. 1986;232(4758):1612–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004;11(6):679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Begg IM, Nicholson S. Semantic and episodic relations are experimentally dissociable and stochastically independent. Can J Exp Psychol. 1994;48(3):399–417.CrossRefGoogle Scholar
  57. 57.
    Arwas S, Rolnick A, Lubow RE. Conditioned taste aversion in humans using motion-induced sickness as the US. Behav Res Ther. 1989;27(3):295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cohen NJ, et al. Different memory systems underlying acquisition of procedural and declarative knowledge. Ann N Y Acad Sci. 1985;444:54–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Garcia-Lazaro HG, et al. Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies. Neurol India. 2012;60(6):613–7.CrossRefGoogle Scholar
  60. 60.
    Horner MD. Psychobiological evidence for the distinction between episodic and semantic memory. Neuropsychol Rev. 1990;1(4):281–321.CrossRefGoogle Scholar
  61. 61.
    Moscovitch M, et al. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol. 2006;16(2):179–90.CrossRefGoogle Scholar
  62. 62.
    Platel H. Functional neuroimaging of semantic and episodic musical memory. Ann N Y Acad Sci. 2005;1060:136–47.CrossRefGoogle Scholar
  63. 63.
    Renoult L, et al. Personal semantics: at the crossroads of semantic and episodic memory. Trends Cogn Sci. 2012;16(11):550–8.CrossRefGoogle Scholar
  64. 64.
    Greenberg DL, Verfaellie M. Interdependence of episodic and semantic memory: evidence from neuropsychology. J Int Neuropsychol Soc. 2010;16(5):748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Diamond DM, et al. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007;2007:60803.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Buzsaki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 2005;15(7):827–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Janowsky JS, et al. Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behav Neurosci. 1989;103(3):548–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Janowsky JS, Shimamura AP, Squire LR. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia. 1989;27(8):1043–56.PubMedCrossRefGoogle Scholar
  69. 69.
    Nyberg L, et al. Activation of medial temporal structures during episodic memory retrieval. Nature. 1996;380(6576):715–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Nyberg L, Cabeza R, Tulving E. Asymmetric frontal activation during episodic memory: what kind of specificity? Trends Cogn Sci. 1998;2(11):419–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8(3):198–204.PubMedCrossRefGoogle Scholar
  72. 72.
    Wheeler MA, Stuss DT, Tulving E. Frontal lobe damage produces episodic memory impairment. J Int Neuropsychol Soc. 1995;1(6):525–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Gabrieli JD, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci U S A. 1998;95(3):906–13.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    McIntosh AR, et al. Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Hum Brain Mapp. 1997;5(4):323–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Wagner AD, et al. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain. 1998;121(Pt 10):1985–2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Croxson PL, et al. Acetylcholine facilitates recovery of episodic memory after brain damage. J Neurosci. 2012;32(40):13787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Danion JM, et al. Pharmacology of human memory and cognition: illustrations from the effects of benzodiazepines and cholinergic drugs. J Psychopharmacol. 1993;7(4):371–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Chowdhury R, et al. Dopamine modulates episodic memory persistence in old age. J Neurosci. 2012;32(41):14193–204.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grogan J, et al. Dopamine and consolidation of episodic memory: timing is everything. J Cogn Neurosci. 2015;27(10):2035–50.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Huang M, et al. 5-HT1A parital agonism and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology. 2018;235(10):2795–808.PubMedCrossRefGoogle Scholar
  81. 81.
    O’Halloran KD. Blast from the past! Phrenic motor memory of antecedent episodic hypercapnia is serotonin dependent: relevance to respiratory rehabilitation and sleep-disordered breathing? Exp Physiol. 2016;101(2):258–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Papenberg G, et al. Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiol Aging. 2014;35(5):1213 e3–8.CrossRefGoogle Scholar
  83. 83.
    Kihlstrom JF. Posthypnotic amnesia for recently learned material: interactions with “episodic” and “semantic” memory. Cogn Psychol. 1980;12(2):227–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Fletcher PD, Warren JD. Semantic dementia: a specific network-opathy. J Mol Neurosci. 2011;45(3):629–36.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Irish M. Elucidating a Core semantic network in the brain-implications for disorders of semantic cognition. J Neurosci. 2016;36(23):6144–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tune S, Asaridou SS. Stimulating the semantic network: what can TMS tell us about the roles of the posterior middle temporal gyrus and angular gyrus? J Neurosci. 2016;36(16):4405–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fisk AD, et al. Age-related retention of skilled memory search: examination of associative learning, interference, and task-specific skills. J Gerontol B Psychol Sci Soc Sci. 1995;50(3):P150–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Fransen E, Lansner A. A model of cortical associative memory based on a horizontal network of connected columns. Network. 1998;9(2):235–64.PubMedCrossRefGoogle Scholar
  89. 89.
    Haberly LB, Bower JM. Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 1989;12(7):258–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Page RA, von Merten S, Siemers BM. Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews. Anim Cogn. 2012;15(4):495–504.PubMedCrossRefGoogle Scholar
  91. 91.
    Mayes AR, Montaldi D. Exploring the neural bases of episodic and semantic memory: the role of structural and functional neuroimaging. Neurosci Biobehav Rev. 2001;25(6):555–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Starr JM, et al. Episodic and semantic memory tasks activate different brain regions in Alzheimer disease. Neurology. 2005;65(2):266–9.PubMedCrossRefGoogle Scholar
  93. 93.
    McCarthy RA, Warrington EK. Disorders of semantic memory. Philos Trans R Soc Lond Ser B Biol Sci. 1994;346(1315):89–96.CrossRefGoogle Scholar
  94. 94.
    McCarthy RA, Warrington EK. Past, present, and prospects: reflections 40 years on from the selective impairment of semantic memory (Warrington, 1975). Q J Exp Psychol (Hove). 2016;69(10):1941–68.CrossRefGoogle Scholar
  95. 95.
    Farah MJ, et al. Category-specificity and modality-specificity in semantic memory. Neuropsychologia. 1989;27(2):193–200.PubMedCrossRefGoogle Scholar
  96. 96.
    Farah MJ, McClelland JL. A computational model of semantic memory impairment: modality specificity and emergent category specificity. J Exp Psychol Gen. 1991;120(4):339–57.PubMedCrossRefGoogle Scholar
  97. 97.
    Lambon Ralph MA, Patterson K. Generalization and differentiation in semantic memory: insights from semantic dementia. Ann N Y Acad Sci. 2008;1124:61–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Lambon Ralph MA, et al. Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review. J Neurol Neurosurg Psychiatry. 2001;70(2):149–56.CrossRefGoogle Scholar
  99. 99.
    Nyberg L, McIntosh AR, Tulving E. Functional brain imaging of episodic and semantic memory with positron emission tomography. J Mol Med (Berl). 1998;76(1):48–53.CrossRefGoogle Scholar
  100. 100.
    Tippett LJ, Grossman M, Farah MJ. The semantic memory impairment of Alzheimer’s disease: category-specific? Cortex. 1996;32(1):143–53.CrossRefGoogle Scholar
  101. 101.
    Kable JW, et al. Conceptual representations of action in the lateral temporal cortex. J Cogn Neurosci. 2005;17(12):1855–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Thompson-Schill SL, et al. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A. 1997;94(26):14792–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lei Z, et al. Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Front Cell Neurosci. 2017;11(316):1–11.Google Scholar
  104. 104.
    Pignatelli M, et al. Engram cell excitability state determines the efficacy of memory retrieval. Neuron. 2019;101(2):274–284.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chen N, Chen X, Wang J-H. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci. 2008;121(17):2961–71.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang JH, et al. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008;121(17):2951–60.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Feng J, et al. Cell-specific plasticity associated with integrative memory of triple sensory signals in the barrel cortex. Oncotarget. 2018;9(57):30962–78.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kaylor CW, Davidon RS. Accuracy of recall as a function of eidetic imagery. Percept Mot Skills. 1979;48(3 Pt 2):1143–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Brainerd CJ, Reyna VF, Ceci SJ. Developmental reversals in false memory: a review of data and theory. Psychol Bull. 2008;134(3):343–82.PubMedCrossRefGoogle Scholar
  110. 110.
    Loftus EF. Memory distortion and false memory creation. Bull Am Acad Psychiatry Law. 1996;24(3):281–95.PubMedGoogle Scholar
  111. 111.
    Giray EF, et al. The incidence of eidetic imagery as a function of age. Child Dev. 1976;47(4):1207–10.CrossRefGoogle Scholar
  112. 112.
    Kurkela KA, Dennis NA. Event-related fMRI studies of false memory: an activation likelihood estimation meta-analysis. Neuropsychologia. 2016;81:149–67.PubMedCrossRefGoogle Scholar
  113. 113.
    Reyna VF, Brainerd CJ. Fuzzy-trace theory and false memory: new frontiers. J Exp Child Psychol. 1998;71(2):194–209.PubMedCrossRefGoogle Scholar
  114. 114.
    Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.PubMedCrossRefGoogle Scholar
  115. 115.
    Constantinidis C, Klingberg T. The neuroscience of working memory capacity and training. Nat Rev Neurosci. 2016;17(7):438–49.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhou YD, Ardestani A, Fuster JM. Distributed and associative working memory. Cereb Cortex. 2007;17(Suppl 1):i77–87.PubMedCrossRefGoogle Scholar
  117. 117.
    Granger R, Lynch G. Higher olfactory processes: perceptual learning and memory. Curr Opin Neurobiol. 1991;1(2):209–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Magnussen S, Greenlee MW. The psychophysics of perceptual memory. Psychol Res. 1999;62(2–3):81–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Hedge C, Oberauer K, Leonards U. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map. Atten Percept Psychophys. 2015;77(8):2653–68.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Koshino H, Olid P. Interactions between modality of working memory load and perceptual load in distractor processing. J Gen Psychol. 2015;142(3):135–49.PubMedCrossRefGoogle Scholar
  121. 121.
    Weil RS, et al. Opposite effects of perceptual and working memory load on perceptual filling-in of an artificial scotoma. Cogn Neurosci. 2012;3(1):36–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Brewin CR. Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder. Psychol Bull. 2014;140(1):69–97.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Schacter DL. Perceptual representation systems and implicit memory. Toward a resolution of the multiple memory systems debate. Ann N Y Acad Sci. 1990;608:543–67; discussion 567–71PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hampton RR. Monkey perirhinal cortex is critical for visual memory, but not for visual perception: reexamination of the behavioural evidence from monkeys. Q J Exp Psychol B. 2005;58(3–4):283–99.CrossRefGoogle Scholar
  125. 125.
    Khan ZU, Martin-Montanez E, Baxter MG. Visual perception and memory systems: from cortex to medial temporal lobe. Cell Mol Life Sci. 2011;68(10):1737–54.CrossRefGoogle Scholar
  126. 126.
    Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci. 1993;16:245–63.CrossRefGoogle Scholar
  127. 127.
    Super H. Cognitive processing in the primary visual cortex: from perception to memory. Rev Neurosci. 2002;13(4):287–98.CrossRefGoogle Scholar
  128. 128.
    Lanke J, et al. Spatial memory and stereotypic behaviour of animals in radial arm mazes. Brain Res. 1993;605(2):221–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    O’Keefe J. Hippocampus, theta, and spatial memory. Curr Opin Neurobiol. 1993;3(6):917–24.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wilson DA, Stevenson RJ. Olfactory perceptual learning: the critical role of memory in odor discrimination. Neurosci Biobehav Rev. 2003;27(4):307–28.CrossRefGoogle Scholar
  131. 131.
    Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron. 2012;72(4):506–19.CrossRefGoogle Scholar
  132. 132.
    Mizuno K, Ueda A. Antenatal olfactory learning influences infant feeding. Early Hum Dev. 2004;76(2):83–90.CrossRefGoogle Scholar
  133. 133.
    Pautassi RM, et al. Acute ethanol counteracts the acquisition of aversive olfactory learning in infant rats. Alcohol. 2005;36(2):99–105.CrossRefGoogle Scholar
  134. 134.
    Bodner M, et al. Patterned firing of parietal cells in a haptic working memory task. Eur J Neurosci. 2005;21(9):2538–46.PubMedCrossRefGoogle Scholar
  135. 135.
    Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323–38.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Cowan N. Multiple concurrent thoughts: the meaning and developmental neuropsychology of working memory. Dev Neuropsychol. 2010;35(5):447–74.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ericsson KA, Kintsch W. Long-term working memory. Psychol Rev. 1995;102(2):211–45.CrossRefGoogle Scholar
  138. 138.
    Fuster JM, Bressler SL. Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci. 2012;16(4):207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Rhodes S, Cowan N. Attention in working memory: attention is needed but it yearns to be free. Ann N Y Acad Sci. 2018;1424(1):52–63.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Buszard T, Masters RS, Farrow D. The generalizability of working-memory capacity in the sport domain. Curr Opin Psychol. 2017;16:54–7.CrossRefGoogle Scholar
  141. 141.
    Glassman RB. A working memory “theory of relativity”: elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition. Brain Res Bull. 1999;48(5):475–89.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Oberauer K, et al. What limits working memory capacity? Psychol Bull. 2016;142(7):758–99.CrossRefGoogle Scholar
  143. 143.
    Unsworth N, Robison MK. A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychon Bull Rev. 2017;24(4):1282–311.CrossRefGoogle Scholar
  144. 144.
    Fukuda K, Awh E, Vogel EK. Discrete capacity limits in visual working memory. Curr Opin Neurobiol. 2010;20(2):177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Moran TP. Anxiety and working memory capacity: a meta-analysis and narrative review. Psychol Bull. 2016;142(8):831–64.CrossRefGoogle Scholar
  146. 146.
    Hartley AA, Speer NK. Locating and fractionating working memory using functional neuroimaging: storage, maintenance, and executive functions. Microsc Res Tech. 2000;51(1):45–53.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Hsieh LT, Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage. 2014;85(Pt 2):721–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Jensen O. Maintenance of multiple working memory items by temporal segmentation. Neuroscience. 2006;139(1):237–49.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Nyberg L, Eriksson J. Working memory: maintenance, updating, and the realization of intentions. Cold Spring Harb Perspect Biol. 2015;8(2):a021816.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol. 2012;96(3):283–303.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Wu WW, Oh MM, Disterhoft JF. Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory. Ageing Res Rev. 2002;1(2):181–207.PubMedCrossRefGoogle Scholar
  152. 152.
    Lipsitt LP. The study of sensory and learning processes of the newborn. Clin Perinatol. 1977;4(1):163–86.PubMedCrossRefGoogle Scholar
  153. 153.
    Ghose GM. Learning in mammalian sensory cortex. Curr Opin Neurobiol. 2004;14(4):513–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Boldin AM, Geiger R, Emberson LL. The emergence of top-down, sensory prediction during learning in infancy: a comparison of full-term and preterm infants. Dev Psychobiol. 2018;60(5):544–56.PubMedCrossRefGoogle Scholar
  155. 155.
    Dolan RJ, Vuilleumier P. Amygdala automaticity in emotional processing. Ann N Y Acad Sci. 2003;985:348–55.PubMedCrossRefGoogle Scholar
  156. 156.
    Han JH, et al. Selective erasure of a fear memory. Science. 2009;323(5920):1492–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Maren S. The amygdala, synaptic plasticity, and fear memory. Ann N Y Acad Sci. 2003;985:106–13.CrossRefGoogle Scholar
  158. 158.
    Cardinal RN, et al. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev. 2002;26(3):321–52.PubMedCrossRefGoogle Scholar
  159. 159.
    Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5(11):844–52.CrossRefGoogle Scholar
  160. 160.
    Phelps EA. Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol. 2006;57:27–53.PubMedCrossRefGoogle Scholar
  161. 161.
    Sherman E. Reminiscentia: cherished objects as memorabilia in late-life reminiscence. Int J Aging Hum Dev. 1991;33(2):89–100.PubMedCrossRefGoogle Scholar
  162. 162.
    Wang J-H, Lu W. Molecular profiles in the brain are involved in fear memory induced by physical and psychological stress. Soc Neurosci. 2018;425.19(425):III61.Google Scholar
  163. 163.
    Adler LL, Berkowitz PH. Influencing associative thinking and imagery in emotionally disturbed children. Psychol Rep. 1976;39(1):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Gordon R, Silverstein ML, Harrow M. Associative thinking in schizophrenia: a contextualist approach. J Clin Psychol. 1982;38(4):684–96.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Martins J, Mendes RV. Neural networks and logical reasoning systems: a translation table. Int J Neural Syst. 2001;11(2):179–86.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Procyk E, Joseph JP. Problem solving and logical reasoning in the macaque monkey. Behav Brain Res. 1996;82(1):67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ramsey NF, et al. Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain. 2002;125(Pt 8):1793–807.CrossRefGoogle Scholar
  168. 168.
    Cevallos C, et al. Oscillations in the human brain during walking execution, imagination and observation. Neuropsychologia. 2015;79(Pt B):223–32.PubMedCrossRefGoogle Scholar
  169. 169.
    Henkin RI, Levy LM. Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes. J Comput Assist Tomogr. 2002;26(1):39–61.PubMedCrossRefGoogle Scholar
  170. 170.
    Mullally SL, Maguire EA. Memory, imagination, and predicting the future: a common brain mechanism? Neuroscientist. 2014;20(3):220–34.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jin-Hui Wang
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations