Patterns of Learning and Memory

  • Jin-Hui Wang


Learning and memory have been classified into various patterns in physiology and psychology, although cellular architectures underlying these patterns of information acquisition and storage remain largely unknown. It is critically important to reveal the correlation of memory cells and their circuits with various memory patterns in order to have a comprehensive view of learning and memory as well as develop therapeutic strategies for memory deficits. In the acquisition of information, knowledge, and experiences, learning has been classified into associative learning and nonassociative learning, in which associative learning is a major style in information acquisition. In terms of the pattern of memories to acquired signals, various classifications are assigned based on memory contents. For instance, declarative (explicit) memory or nondeclarative (implicit) memory is judged whether memories are associated with consciousness state or not. In declarative memory, episodic memory refers to the storage of events, place, time, their associated emotions, and other conception-based knowledge in relevance to specific experience, whereas semantic memory involves episodic memory relevant to generalized and summarized knowledge, theories, and views. Based on input and output, there are working memory and perceptual memory. Working memory is featured as a short-term memory from the sensory input guidance to the processing manipulation, whereas perceptual memory is featured as long-term memories to visual, auditory, and other perceptual signals. In terms of the capacity and efficiency of signal retrievals about perceptual memory, eidetic memory is used to describe that the signals learned in short time can be retrieved vividly, especially in the childhood stage. Regardless of these patterns classified for learning and memory, the purpose of studying memory formation and retrieval is to uncover cellular architectures that are suitable to interpret all of these types of memories. In this chapter, author intends to figure out a diagram constructed from these types of memories and to propose testable cellular networks for them.


Associative memory Explicit memory Implicit memory Episodic memory and semantic memory 


  1. 1.
    Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    McGaugh JL. Memory – a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Tonegawa S, et al. Memory engram cells have come of age. Neuron. 2015;87(5):918–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Res. 2019;8(457):1–28.Google Scholar
  7. 7.
    Byrne JH. Learning and memory: basic mechanisms. In: Square LR, et al., editors. Fundament neuroscience. 2nd ed. Amsterdam: Academic; 2003. p. 1275–98.Google Scholar
  8. 8.
    Kandel ER. Nerve cells and behavior. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 19–35.Google Scholar
  9. 9.
    Wasserman EA, Miller RR. What’s elementary about associative learning? Annu Rev Psychol. 1997;48:573–607.CrossRefGoogle Scholar
  10. 10.
    Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cadorin L, et al. An integrative review of the characteristics of meaningful learning in healthcare professionals to enlighten educational practices in health care. Nurs Open. 2014;1(1):3–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cake MA. Deep dissection: motivating students beyond rote learning in veterinary anatomy. J Vet Med Educ. 2006;33(2):266–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Gewirtz JL. Conditional responding as a paradigm for observational, imitative learning and vicarious-reinforcement. Adv Child Dev Behav. 1971;6:273–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Frenois F, Le Moine C, Cador M. The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci. 2005;16(3):255–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Letzkus JJ, Wolff SB, Luthi A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron. 2015;88(2):264–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki WA. Associative learning signals in the brain. Prog Brain Res. 2008;169:305–20.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Byrne JH, Eskin A, Scholz KP. Neuronal mechanisms contributing to long-term sensitization in Aplysia. J Physiol Paris. 1988;83(3):141–7.PubMedGoogle Scholar
  19. 19.
    Wood DC. Habituation in Stentor: produced by mechanoreceptor channel modification. J Neurosci. 1988;8(7):2254–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Pavlov I. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Translated by Anrep GV. Nature. 1927;121(3052):662–4.Google Scholar
  21. 21.
    Baars BJ, Gage NM. In: Baars BJ, Gage NM, editors. Cognition, brain, and consciousness: introduction to cognitive neuroscience. London: Elsevier Ltd; 2007.Google Scholar
  22. 22.
    Watson J. Psychology as the behaviorist views it: the behaviorist manifesto. Baltimore: John Hopkins University; 1913.CrossRefGoogle Scholar
  23. 23.
    Carcea I, Froemke RC. Biological mechanisms for observational learning. Curr Opin Neurobiol. 2019;54:178–85.PubMedCrossRefGoogle Scholar
  24. 24.
    Zentall TR. Perspectives on observational learning in animals. J Comp Psychol. 2012;126(2):114–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Bolhuis JJ, Honey RC. Imprinting, learning and development: from behaviour to brain and back. Trends Neurosci. 1998;21(7):306–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Horn G. Imprinting, learning, and memory. Behav Neurosci. 1986;100(6):825–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Hedges JH, et al. Play, attention, and learning: how do play and timing shape the development of attention and influence classroom learning? Ann N Y Acad Sci. 2013;1292:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hill HM, Dietrich S, Cappiello B. Learning to play: a review and theoretical investigation of the developmental mechanisms and functions of cetacean play. Learn Behav. 2017;45(4):335–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Cardoso-Leite P, Bavelier D. Video game play, attention, and learning: how to shape the development of attention and influence learning? Curr Opin Neurol. 2014;27(2):185–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Pearce MT. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Ann N Y Acad Sci. 2018;1423:378–95.CrossRefGoogle Scholar
  31. 31.
    Grunwald T, Corsbie-Massay C. Guidelines for cognitively efficient multimedia learning tools: educational strategies, cognitive load, and interface design. Acad Med. 2006;81(3):213–23.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Eiriksdottir E, Catrambone R. Procedural instructions, principles, and examples: how to structure instructions for procedural tasks to enhance performance, learning, and transfer. Hum Factors. 2011;53(6):749–70.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Agra G, et al. Analysis of the concept of meaningful learning in light of the Ausubel’s theory. Rev Bras Enferm. 2019;72(1):248–55.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Giannini AJ, Giannini JN, Condon M. Use of tangential visual symbols to increase the long-term learning process: applications of linkage in teaching pharmacological principles of addiction. J Clin Pharmacol. 2000;40(7):708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    McLaughlin B. “Intentional” and “Incidental” learning in human subjects: the role of instructions to learn and motivation. Psychol Bull. 1965;63:359–76.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Byrne JH. Cellular analysis of associative learning. Physiol Rev. 1987;67(2):329–439.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.Google Scholar
  40. 40.
    Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.Google Scholar
  41. 41.
    Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang JH, et al. Upregulation of glutamatergic receptor-channels is associated with cross-modal reflexes encoded in barrel cortex and piriform cortex. Biophys J. 2014;106(supplement 2):191a.CrossRefGoogle Scholar
  43. 43.
    Wang J-H, et al. Both glutamatergic and gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(supplement 3):481a.CrossRefGoogle Scholar
  44. 44.
    Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.Google Scholar
  45. 45.
    Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.Google Scholar
  46. 46.
    Wang J-H, et al. Prefrontal cortical neurons are recruited as secondary associative memory cells for associative memory and cognition. Biophys J. 2018;114(3):155a.CrossRefGoogle Scholar
  47. 47.
    Wang JH, et al. Secondary associative memory cells and their plasticity in the prefrontal cortex. Biophys J. 2019;116(3):427a.CrossRefGoogle Scholar
  48. 48.
    Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A. 1996;93(24):13515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004;11(6):679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Garcia-Lazaro HG, et al. Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies. Neurol India. 2012;60(6):613–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Horner MD. Psychobiological evidence for the distinction between episodic and semantic memory. Neuropsychol Rev. 1990;1(4):281–321.PubMedCrossRefGoogle Scholar
  53. 53.
    Moscovitch M, et al. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol. 2006;16(2):179–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Platel H. Functional neuroimaging of semantic and episodic musical memory. Ann N Y Acad Sci. 2005;1060:136–47.PubMedCrossRefGoogle Scholar
  55. 55.
    Renoult L, et al. Personal semantics: at the crossroads of semantic and episodic memory. Trends Cogn Sci. 2012;16(11):550–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Squire LR, Zola SM. Episodic memory, semantic memory, and amnesia. Hippocampus. 1998;8(3):205–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Tulving E. Multiple memory systems and consciousness. Hum Neurobiol. 1987;6(2):67–80.PubMedGoogle Scholar
  58. 58.
    Wood F. Focal and diffuse memory activation assessed by localized indicators of CNS metabolism: the semantic-episodic memory distinction. Hum Neurobiol. 1987;6(2):141–51.PubMedGoogle Scholar
  59. 59.
    Begg IM, Nicholson S. Semantic and episodic relations are experimentally dissociable and stochastically independent. Can J Exp Psychol. 1994;48(3):399–417.PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen NJ, et al. Different memory systems underlying acquisition of procedural and declarative knowledge. Ann N Y Acad Sci. 1985;444:54–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Arwas S, Rolnick A, Lubow RE. Conditioned taste aversion in humans using motion-induced sickness as the US. Behav Res Ther. 1989;27(3):295–301.PubMedCrossRefGoogle Scholar
  62. 62.
    Roediger HL 3rd. Implicit memory. Retention without remembering. Am Psychol. 1990;45(9):1043–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Roediger HL 3rd, McDermott KB. Remembering what we learn. Cerebrum. 2018;pii:cer-08-18.Google Scholar
  64. 64.
    Brooks DN, Baddeley AD. What can amnesic patients learn? Neuropsychologia. 1976;14(1):111–22.PubMedCrossRefGoogle Scholar
  65. 65.
    Jacoby LL, Dallas M. On the relationship between autobiographical memory and perceptual learning. J Exp Psychol Gen. 1981;110(3):306–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Graf P, Schacter DL. Implicit and explicit memory for new associations in normal and amnesic subjects. J Exp Psychol Learn Mem Cogn. 1985;11(3):501–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Challis BH, et al. Perceptual and conceptual cueing in implicit and explicit retrieval. Memory. 1993;1(2):127–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Greenberg DL, Verfaellie M. Interdependence of episodic and semantic memory: evidence from neuropsychology. J Int Neuropsychol Soc. 2010;16(5):748–53.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Maguire EA, Frith CD. Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain. 2003;126(Pt 7):1511–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Maguire EA, Frith CD. Lateral asymmetry in the hippocampal response to the remoteness of autobiographical memories. J Neurosci. 2003;23(12):5302–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Diamond DM, et al. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast. 2007;2007:60803.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nyberg L, et al. Activation of medial temporal structures during episodic memory retrieval. Nature. 1996;380(6576):715–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Nyberg L, Cabeza R, Tulving E. Asymmetric frontal activation during episodic memory: what kind of specificity? Trends Cogn Sci. 1998;2(11):419–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8(3):198–204.PubMedCrossRefGoogle Scholar
  75. 75.
    Buzsaki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 2005;15(7):827–40.PubMedCrossRefGoogle Scholar
  76. 76.
    Janowsky JS, et al. Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behav Neurosci. 1989;103(3):548–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Janowsky JS, Shimamura AP, Squire LR. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia. 1989;27(8):1043–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Gabrieli JD, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci U S A. 1998;95(3):906–13.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    McIntosh AR, et al. Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Hum Brain Mapp. 1997;5(4):323–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Wagner AD, et al. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain. 1998;121(Pt 10):1985–2002.PubMedCrossRefGoogle Scholar
  81. 81.
    Wheeler MA, Stuss DT, Tulving E. Frontal lobe damage produces episodic memory impairment. J Int Neuropsychol Soc. 1995;1(6):525–36.PubMedCrossRefGoogle Scholar
  82. 82.
    Deisseroth K, et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42(4):535–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Croxson PL, et al. Acetylcholine facilitates recovery of episodic memory after brain damage. J Neurosci. 2012;32(40):13787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Danion JM, et al. Pharmacology of human memory and cognition: illustrations from the effects of benzodiazepines and cholinergic drugs. J Psychopharmacol. 1993;7(4):371–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Grogan J, et al. Dopamine and consolidation of episodic memory: timing is everything. J Cogn Neurosci. 2015;27(10):2035–50.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Huang M, et al. 5-HT1A parital agonism and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology. 2018;235(10):2795–808.PubMedCrossRefGoogle Scholar
  87. 87.
    O’Halloran KD. Blast from the past! Phrenic motor memory of antecedent episodic hypercapnia is serotonin dependent: relevance to respiratory rehabilitation and sleep-disordered breathing? Exp Physiol. 2016;101(2):258–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Papenberg G, et al. Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiol Aging. 2014;35(5):1213 e3–8.CrossRefGoogle Scholar
  89. 89.
    Dempster EL, et al. Episodic memory performance predicted by the 2bp deletion in exon 6 of the “alpha 7-like” nicotinic receptor subunit gene. Am J Psychiatry. 2006;163(10):1832–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Fernandes C, et al. Performance deficit of alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav. 2006;5(6):433–40.PubMedCrossRefGoogle Scholar
  91. 91.
    Chowdhury R, et al. Dopamine modulates episodic memory persistence in old age. J Neurosci. 2012;32(41):14193–204.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Eustache F, et al. Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit? J Neurol Neurosurg Psychiatry. 1999;66(2):148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Guillery-Girard B, et al. Long-term memory following transient global amnesia: an investigation of episodic and semantic memory. Acta Neurol Scand. 2006;114(5):329–33.PubMedCrossRefGoogle Scholar
  94. 94.
    Cooper RA, et al. Reduced hippocampal functional connectivity during episodic memory retrieval in autism. Cereb Cortex. 2017;27(2):888–902.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gaigg SB, Bowler DM, Gardiner JM. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task. Memory. 2014;22(6):669–78.PubMedCrossRefGoogle Scholar
  96. 96.
    Wojcik DZ, Moulin CJ, Souchay C. Metamemory in children with autism: exploring “feeling-of-knowing” in episodic and semantic memory. Neuropsychology. 2013;27(1):19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gron G, Riepe MW. Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. Am J Geriatr Psychiatry. 2004;12(6):648–52.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tromp D, et al. Episodic memory in normal aging and Alzheimer disease: insights from imaging and behavioral studies. Ageing Res Rev. 2015;24(Pt B):232–62.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ostergaard AL. Episodic, semantic and procedural memory in a case of amnesia at an early age. Neuropsychologia. 1987;25(2):341–57.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tulving E. In: Tulving E, editor. Elements of episodic memory. London: Oxford University Press; 1985.Google Scholar
  101. 101.
    Kihlstrom JF. Posthypnotic amnesia for recently learned material: interactions with “episodic” and “semantic” memory. Cogn Psychol. 1980;12(2):227–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Tune S, Asaridou SS. Stimulating the semantic network: what can TMS tell us about the roles of the posterior middle temporal gyrus and angular gyrus? J Neurosci. 2016;36(16):4405–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fletcher PD, Warren JD. Semantic dementia: a specific network-opathy. J Mol Neurosci. 2011;45(3):629–36.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Irish M. Elucidating a core semantic network in the brain-implications for disorders of semantic cognition. J Neurosci. 2016;36(23):6144–6.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fransen E, Lansner A. A model of cortical associative memory based on a horizontal network of connected columns. Network. 1998;9(2):235–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Haberly LB, Bower JM. Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 1989;12(7):258–64.PubMedCrossRefGoogle Scholar
  107. 107.
    Fisk AD, et al. Age-related retention of skilled memory search: examination of associative learning, interference, and task-specific skills. J Gerontol B Psychol Sci Soc Sci. 1995;50(3):P150–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Page RA, von Merten S, Siemers BM. Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews. Anim Cogn. 2012;15(4):495–504.PubMedCrossRefGoogle Scholar
  109. 109.
    Mayes AR, Montaldi D. Exploring the neural bases of episodic and semantic memory: the role of structural and functional neuroimaging. Neurosci Biobehav Rev. 2001;25(6):555–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Starr JM, et al. Episodic and semantic memory tasks activate different brain regions in Alzheimer disease. Neurology. 2005;65(2):266–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Martin-Ordas G, Atance CM, Caza JS. How do episodic and semantic memory contribute to episodic foresight in young children? Front Psychol. 2014;5:732.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nyberg L, McIntosh AR, Tulving E. Functional brain imaging of episodic and semantic memory with positron emission tomography. J Mol Med (Berl). 1998;76(1):48–53.CrossRefGoogle Scholar
  113. 113.
    Lambon Ralph MA, Patterson K. Generalization and differentiation in semantic memory: insights from semantic dementia. Ann N Y Acad Sci. 2008;1124:61–76.PubMedCrossRefGoogle Scholar
  114. 114.
    Lambon Ralph MA, et al. Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer’s type: a comparative neuropsychological study and literature review. J Neurol Neurosurg Psychiatry. 2001;70(2):149–56.CrossRefGoogle Scholar
  115. 115.
    Farah MJ, et al. Category-specificity and modality-specificity in semantic memory. Neuropsychologia. 1989;27(2):193–200.PubMedCrossRefGoogle Scholar
  116. 116.
    Farah MJ, McClelland JL. A computational model of semantic memory impairment: modality specificity and emergent category specificity. J Exp Psychol Gen. 1991;120(4):339–57.PubMedCrossRefGoogle Scholar
  117. 117.
    Tippett LJ, Grossman M, Farah MJ. The semantic memory impairment of Alzheimer’s disease: category-specific? Cortex. 1996;32(1):143–53.CrossRefGoogle Scholar
  118. 118.
    McCarthy RA, Warrington EK. Disorders of semantic memory. Philos Trans R Soc Lond Ser B Biol Sci. 1994;346(1315):89–96.CrossRefGoogle Scholar
  119. 119.
    McCarthy RA, Warrington EK. Past, present, and prospects: reflections 40 years on from the selective impairment of semantic memory (Warrington, 1975). Q J Exp Psychol (Hove). 2016;69(10):1941–68.CrossRefGoogle Scholar
  120. 120.
    Cohen G, Johnston R, Plunkett K. In: Cohen G, editor. Exploring cognition: damaged brains and neural networks. Exploring cognition: Damaged brains and neural networks. Erlbaum: Psychology Press; 2002.Google Scholar
  121. 121.
    Kable JW, et al. Conceptual representations of action in the lateral temporal cortex. J Cogn Neurosci. 2005;17(12):1855–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Thompson-Schill SL, et al. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A. 1997;94(26):14792–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.PubMedCrossRefGoogle Scholar
  124. 124.
    Constantinidis C, Klingberg T. The neuroscience of working memory capacity and training. Nat Rev Neurosci. 2016;17(7):438–49.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhou YD, Ardestani A, Fuster JM. Distributed and associative working memory. Cereb Cortex. 2007;17(Suppl 1):i77–87.PubMedCrossRefGoogle Scholar
  126. 126.
    Granger R, Lynch G. Higher olfactory processes: perceptual learning and memory. Curr Opin Neurobiol. 1991;1(2):209–14.PubMedCrossRefGoogle Scholar
  127. 127.
    Magnussen S, Greenlee MW. The psychophysics of perceptual memory. Psychol Res. 1999;62(2–3):81–92.PubMedCrossRefGoogle Scholar
  128. 128.
    Hedge C, Oberauer K, Leonards U. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map. Atten Percept Psychophys. 2015;77(8):2653–68.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Koshino H, Olid P. Interactions between modality of working memory load and perceptual load in distractor processing. J Gen Psychol. 2015;142(3):135–49.PubMedCrossRefGoogle Scholar
  130. 130.
    Weil RS, et al. Opposite effects of perceptual and working memory load on perceptual filling-in of an artificial scotoma. Cogn Neurosci. 2012;3(1):36–44.PubMedCrossRefGoogle Scholar
  131. 131.
    Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323–38.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Rhodes S, Cowan N. Attention in working memory: attention is needed but it yearns to be free. Ann N Y Acad Sci. 2018;1424(1):52–63.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cowan N. Multiple concurrent thoughts: the meaning and developmental neuropsychology of working memory. Dev Neuropsychol. 2010;35(5):447–74.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ericsson KA, Kintsch W. Long-term working memory. Psychol Rev. 1995;102(2):211–45.PubMedCrossRefGoogle Scholar
  135. 135.
    Oberauer K, et al. What limits working memory capacity? Psychol Bull. 2016;142(7):758–99.PubMedCrossRefGoogle Scholar
  136. 136.
    Buszard T, Masters RS, Farrow D. The generalizability of working-memory capacity in the sport domain. Curr Opin Psychol. 2017;16:54–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Glassman RB. A working memory “theory of relativity”: elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition. Brain Res Bull. 1999;48(5):475–89.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Unsworth N, Robison MK. A locus coeruleus-norepinephrine account of individual differences in working memory capacity and attention control. Psychon Bull Rev. 2017;24(4):1282–311.PubMedCrossRefGoogle Scholar
  139. 139.
    Moran TP. Anxiety and working memory capacity: a meta-analysis and narrative review. Psychol Bull. 2016;142(8):831–64.PubMedCrossRefGoogle Scholar
  140. 140.
    Fukuda K, Awh E, Vogel EK. Discrete capacity limits in visual working memory. Curr Opin Neurobiol. 2010;20(2):177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fuster JM, Bressler SL. Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci. 2012;16(4):207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bodner M, et al. Patterned firing of parietal cells in a haptic working memory task. Eur J Neurosci. 2005;21(9):2538–46.PubMedCrossRefGoogle Scholar
  143. 143.
    Collette F, Van der Linden M. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev. 2002;26(2):105–25.PubMedCrossRefGoogle Scholar
  144. 144.
    Passingham D, Sakai K. The prefrontal cortex and working memory: physiology and brain imaging. Curr Opin Neurobiol. 2004;14(2):163–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Heck A, et al. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron. 2014;81(5):1203–13.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Hartley AA, Speer NK. Locating and fractionating working memory using functional neuroimaging: storage, maintenance, and executive functions. Microsc Res Tech. 2000;51(1):45–53.PubMedCrossRefGoogle Scholar
  147. 147.
    Hsieh LT, Ranganath C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage. 2014;85(Pt 2):721–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Jensen O. Maintenance of multiple working memory items by temporal segmentation. Neuroscience. 2006;139(1):237–49.PubMedCrossRefGoogle Scholar
  149. 149.
    Nyberg L, Eriksson J. Working memory: maintenance, updating, and the realization of intentions. Cold Spring Harb Perspect Biol. 2015;8(2):a021816.PubMedCrossRefGoogle Scholar
  150. 150.
    Brewin CR. Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder. Psychol Bull. 2014;140(1):69–97.PubMedCrossRefGoogle Scholar
  151. 151.
    Schacter DL. Perceptual representation systems and implicit memory. Toward a resolution of the multiple memory systems debate. Ann N Y Acad Sci. 1990;608:543–67.. discussion 567–71PubMedCrossRefGoogle Scholar
  152. 152.
    Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res. 2011;221(2):443–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Hampton RR. Monkey perirhinal cortex is critical for visual memory, but not for visual perception: reexamination of the behavioural evidence from monkeys. Q J Exp Psychol B. 2005;58(3–4):283–99.PubMedCrossRefGoogle Scholar
  154. 154.
    Khan ZU, Martin-Montanez E, Baxter MG. Visual perception and memory systems: from cortex to medial temporal lobe. Cell Mol Life Sci. 2011;68(10):1737–54.PubMedCrossRefGoogle Scholar
  155. 155.
    Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci. 1993;16:245–63.PubMedCrossRefGoogle Scholar
  156. 156.
    Super H. Cognitive processing in the primary visual cortex: from perception to memory. Rev Neurosci. 2002;13(4):287–98.PubMedCrossRefGoogle Scholar
  157. 157.
    Miller E. The affective nature of illusion and hallucination. Part Ii: eidetic imagery. J Neurol Psychopathol. 1931;12(45):1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Saltzman SS, Machover S. An inquiry into eidetic imagery with particular reference to visual hallucinations. Am J Psychiatry. 1952;108(10):740–8.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Haber RN, Standing LG. Direct measures of short-term visual storage. Q J Exp Psychol. 1969;21(1):43–54.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Giray EF, et al. The incidence of eidetic imagery as a function of age. Child Dev. 1976;47(4):1207–10.CrossRefGoogle Scholar
  161. 161.
    Lanke J, et al. Spatial memory and stereotypic behaviour of animals in radial arm mazes. Brain Res. 1993;605(2):221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    O’Keefe J. Hippocampus, theta, and spatial memory. Curr Opin Neurobiol. 1993;3(6):917–24.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Kessels RP, et al. Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Res Brain Res Rev. 2001;35(3):295–303.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Moser EI, Paulsen O. New excitement in cognitive space: between place cells and spatial memory. Curr Opin Neurobiol. 2001;11(6):745–51.PubMedCrossRefGoogle Scholar
  166. 166.
    Eichenbaum H, et al. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron. 1999;23(2):209–26.PubMedCrossRefGoogle Scholar
  167. 167.
    Buchsbaum MS, et al. Temporal and hippocampal metabolic rate during an olfactory memory task assessed by positron emission tomography in patients with dementia of the Alzheimer type and controls. Preliminary studies. Arch Gen Psychiatry. 1991;48(9):840–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Coureaud G, et al. Pheromone-induced olfactory memory in newborn rabbits: involvement of consolidation and reconsolidation processes. Learn Mem. 2009;16(8):470–3.PubMedCrossRefGoogle Scholar
  169. 169.
    Staubli U, et al. Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. Behav Neurosci. 1989;103(1):54–60.PubMedCrossRefGoogle Scholar
  170. 170.
    Rochefort C, et al. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci. 2002;22(7):2679–89.PubMedCrossRefGoogle Scholar
  171. 171.
    Wilson DA, Stevenson RJ. Olfactory perceptual learning: the critical role of memory in odor discrimination. Neurosci Biobehav Rev. 2003;27(4):307–28.PubMedCrossRefGoogle Scholar
  172. 172.
    Wilson DA, Sullivan RM. Cortical processing of odor objects. Neuron. 2012;72(4):506–19.CrossRefGoogle Scholar
  173. 173.
    Mizuno K, Ueda A. Antenatal olfactory learning influences infant feeding. Early Hum Dev. 2004;76(2):83–90.PubMedCrossRefGoogle Scholar
  174. 174.
    Pautassi RM, et al. Acute ethanol counteracts the acquisition of aversive olfactory learning in infant rats. Alcohol. 2005;36(2):99–105.PubMedCrossRefGoogle Scholar
  175. 175.
    Kaylor CW, Davidon RS. Accuracy of recall as a function of eidetic imagery. Percept Mot Skills. 1979;48(3 Pt 2):1143–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Brainerd CJ, Reyna VF, Ceci SJ. Developmental reversals in false memory: a review of data and theory. Psychol Bull. 2008;134(3):343–82.PubMedCrossRefGoogle Scholar
  177. 177.
    Loftus EF. Memory distortion and false memory creation. Bull Am Acad Psychiatry Law. 1996;24(3):281–95.PubMedGoogle Scholar
  178. 178.
    Kurkela KA, Dennis NA. Event-related fMRI studies of false memory: an Activation Likelihood Estimation meta-analysis. Neuropsychologia. 2016;81:149–67.PubMedCrossRefGoogle Scholar
  179. 179.
    Bookbinder SH, Brainerd CJ. Emotion and false memory: the context-content paradox. Psychol Bull. 2016;142(12):1315–51.PubMedCrossRefGoogle Scholar
  180. 180.
    Reyna VF, Brainerd CJ. Fuzzy-trace theory and false memory: new frontiers. J Exp Child Psychol. 1998;71(2):194–209.PubMedCrossRefGoogle Scholar
  181. 181.
    Bremner JD, et al. Neural mechanisms in dissociative amnesia for childhood abuse: relevance to the current controversy surrounding the “false memory syndrome”. Am J Psychiatry. 1996;153(7 Suppl):71–82.PubMedGoogle Scholar
  182. 182.
    Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol. 2012;96(3):283–303.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Wu WW, Oh MM, Disterhoft JF. Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory. Ageing Res Rev. 2002;1(2):181–207.PubMedCrossRefGoogle Scholar
  184. 184.
    Lipsitt LP. The study of sensory and learning processes of the newborn. Clin Perinatol. 1977;4(1):163–86.PubMedCrossRefGoogle Scholar
  185. 185.
    Ghose GM. Learning in mammalian sensory cortex. Curr Opin Neurobiol. 2004;14(4):513–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Boldin AM, Geiger R, Emberson LL. The emergence of top-down, sensory prediction during learning in infancy: a comparison of full-term and preterm infants. Dev Psychobiol. 2018;60(5):544–56.PubMedCrossRefGoogle Scholar
  187. 187.
    Li G, et al. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex. 2014;24(5):1289–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jin-Hui Wang
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations