Advertisement

History in the Study of Learning and Memory

  • Jin-Hui Wang
Chapter

Abstract

Learning is the acquisition of information, knowledge, and experiences from natural environments as well as social interactions. Memory is termed to be the storages and the subsequent retrievals of these acquired messages through recall, recollection and representation. The acquisition of exogenous signals is mainly based on associative learning despite an assumption of non-associative learning. The storage of associated signals is integrative in nature, which is essential for cognitive events and emotional reactions. In the meantime, the processes of cognition, emotion and behavior can be memorized. Associative memory includes the integrative storage of exogenous and endogenous associated signals. Learning and memory have been studied many centuries. Neuronal substrates potentially relevant to learning and memory have been presented in the following names, such as memory trace, engram, cell assemblies, associative memory cells, and so on. In terms of mechanisms underlying these processes, most of the studies indicate that these neuronal substrates are widely distributed in the cerebral brains. Although the natures of memory traces or engrams have not well been documented, cell assemblies are hypothetically to be interconnected neurons. Recently, associative memory cell has been detected. Associative memory cells are neurons with mutual synapse innervations in coactivated brain regions and are able to encode multiple signals carried by these innervations. The recruitment of associative memory cells as well as the refinement of these interconnected neurons and their synapses are thought to be basically for memory formation. In this chapter, author intends to review the histories in the study of learning and memory as well as the trend of revealing neural substrates for information storage and memory retrieval.

Keywords

Learning Memory Engram Memory trace and associative memory cells 

References

  1. 1.
    Eichenbaum H. Still searching for the engram. Learn Behav. 2016;44(3):209–22.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Josselyn SA, Kohler S, Frankland PW. Finding the engram. Nat Rev Neurosci. 2015;16(9):521–34.PubMedCrossRefGoogle Scholar
  3. 3.
    McGaugh JL. Memory – a century of consolidation. Science. 2000;287(5451):248–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hebb DO. The organization of behavior, a neuropsychological theory. New York: Wiley; 1949.Google Scholar
  7. 7.
    Semon RW. Chapter II Engraphic action of stimuli on the individual. In: Semon RW, editor. The mneme. London: George Allen & Unwin; 1921.Google Scholar
  8. 8.
    Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bliss TVP, Lynch MA. Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. In: Landfield PW, Deadwyler SA, editors. Long-term potentiation: from biophysics to behavior. New York: Alan R. Liss; 1988. p. 3–72.Google Scholar
  10. 10.
    Zhang M, et al. Calcium signal-dependent plasticity of neuronal excitability developed postnatally. J Neurobiol. 2004;61:277–87.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Research. 2019;8(457):1–28.Google Scholar
  13. 13.
    Josselyn SA, Kohler S, Frankland PW. Heroes of the engram. J Neurosci. 2017;37(18):4647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kandel ER. Nerve cells and behavior. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 19–35.Google Scholar
  15. 15.
    Poo MM, et al. What is memory? The present state of the engram. BMC Biol. 2016;14:40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tonegawa S, et al. Memory engram cells have come of age. Neuron. 2015;87(5):918–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buzsaki G. Network properties of memory trace formation in the hippocampus. Boll Soc Ital Biol Sper. 1991;67(9):817–35.PubMedGoogle Scholar
  20. 20.
    Katkov M, Romani S, Tsodyks M. Memory retrieval from first principles. Neuron. 2017;94(5):1027–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Jahans-Price T, et al. Computational modeling and analysis of hippocampal-prefrontal information coding during a spatial decision-making task. Front Behav Neurosci. 2014;8:62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lansner A. Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 2009;32(3):178–86.PubMedCrossRefGoogle Scholar
  23. 23.
    McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102(3):419–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwindel CD, McNaughton BL. Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Prog Brain Res. 2011;193:163–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Fields RD. Imaging learning: the search for a memory trace. Neuroscientist. 2011;17(2):185–96.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Russell IS, Ochs S. Localization of a memory trace in one cortical hemisphere and transfer to the other hemisphere. Brain. 1963;86:37–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Penfield W. Bilateral frontal gyrectomy and postoperative intelligence. Res Publ Assoc Res Nerv Ment Dis. 1948;27(1):519–34.PubMedGoogle Scholar
  28. 28.
    Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141(3575):57–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lei Z, et al. Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Front Cell Neurosci. 2017;11(316):1–11.Google Scholar
  31. 31.
    Wang JH, Feng DP. Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation in the hippocampal CA1 region. Proc Natl Acad Sci U S A. 1992;89(7):2576–80.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wang JH, Kelly PT. Postsynaptic injection of Ca2+/CaM induces synaptic potentiation requiring CaM-KII and PKC activity. Neuron. 1995;15(2):443–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang JH, Ko G, Kelly PT. Cellular and molecular bases of memory: synaptic and neuronal plasticity. J Clin Neurophysiol. 1997;14:264–93.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Semon RW. In: Semon RW, editor. Mnemic psychology. London: Allen, Unwin; 1923.Google Scholar
  35. 35.
    McGaugh JL. The search for the memory trace. Ann N Y Acad Sci. 1972;193:112–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Hebb DO. Spontaneous neurosis in chimpanzees; theoretical relations with clinical and experimental phenomena. Psychosom Med. 1947;9(1):3–19.PubMedCrossRefGoogle Scholar
  37. 37.
    Lashley KS. Mass action in cerebral function. Science. 1931;73(1888):245–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Lashley KS. Structural variation in the nervous system in relation to behavior. Psychol Rev. 1947;54(6):325–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Hebb DO. Animal and physiological psychology. Annu Rev Psychol. 1950;1:173–88.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bliss T, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol Lond. 1973;232:331–56.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lashley KS. Cerebral organization and behavior. Res Publ Assoc Res Nerv Ment Dis. 1958;36:1–4; discussion 14–18PubMedGoogle Scholar
  42. 42.
    Milner B, Penfield W. The effect of hippocampal lesions on recent memory. Trans Am Neurol Assoc. 1955;(80th Meeting): 42–8.Google Scholar
  43. 43.
    Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79(5):475–97.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Penfield W. Engrams in the human brain. Mechanisms of memory. Proc R Soc Med. 1968;61(8):831–40.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Flexner LB, Flexner JB, Roberts RB. Memory in mice analyzed with antibiotics. Antibiotics are useful to study stages of memory and to indicate molecular events which sustain memory. Science. 1967;155(3768):1377–83.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Flexner JB, Glexner LB. Studies on memory: evidence for a widespread memory trace in the neocortex after the suppression of recent memory by puromycin. Proc Natl Acad Sci U S A. 1969;62(3):729–32.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Silva AJ, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992;257:206–11.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Liu X, et al. Identification and manipulation of memory engram cells. Cold Spring Harb Symp Quant Biol. 2014;79:59–65.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ramirez S, Tonegawa S, Liu X. Identification and optogenetic manipulation of memory engrams in the hippocampus. Front Behav Neurosci. 2013;7:226.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lashley KS. In: Lashley KS, editor. Brain mechanisms and intelligence. Chicago: University of Chicago; 1929.Google Scholar
  51. 51.
    Lashley KS. The mechanism of vision; effects of destroying the visual associative areas of the monkey. Genet Psychol Monogr. 1948;37(2nd Half):107–66.PubMedGoogle Scholar
  52. 52.
    Lashley KS, Chow KL, Semmes J. An examination of the electrical field theory of cerebral integration. Psychol Rev. 1951;58(2):123–36.PubMedCrossRefGoogle Scholar
  53. 53.
    Lashley KS, Clark G. The cytoarchitecture of the cerebral cortex of Ateles; a critical examination of architectonic studies. J Comp Neurol. 1946;85(2):223–305.PubMedCrossRefGoogle Scholar
  54. 54.
    Hunter WE, Rolf BB. The psychosomatic aspect of dysmenorrhea; a sensory conditioning process. Am J Obstet Gynecol. 1947;53(1):123–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Hebb DO. Cerebral organization and consciousness. Res Publ Assoc Res Nerv Ment Dis. 1967;45:1–7.PubMedGoogle Scholar
  56. 56.
    Hebb DO. Physiological learning theory. J Abnorm Child Psychol. 1976;4(4):309–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Bailey CH, et al. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci. 2000;1(1):11–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Lynch G, Dunwiddie T, Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977;266:737–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Muller D, Hefft S, Figurov A. Heterosynaptic interactions between LTP and LTD in CA1 hippocampal slices. Neuron. 1995;14:599–605.PubMedCrossRefGoogle Scholar
  60. 60.
    Wigström H, Gustafsson B. Heterosynaptic modulation of long-lasting potentiation in the hippocampal slice. Acta Physiol Scand. 1983;119:455–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.Google Scholar
  63. 63.
    Thompson RF, Krupa DJ. Organization of memory traces in the mammalian brain. Annu Rev Neurosci. 1994;17:519–49.PubMedCrossRefGoogle Scholar
  64. 64.
    Milner B. The memory defect in bilateral hippocampal lesions. Psychiatr Res Rep Am Psychiatr Assoc. 1959;11:43–58.PubMedGoogle Scholar
  65. 65.
    Penfield W. Neurosurgery; yesterday, today and tomorrow. J Neurosurg. 1949;6(1):6–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Penfield W. Observations on the anatomy of memory. Folia Psychiatr Neurol Neurochir Neerl. 1950;53(2):349–51.PubMedGoogle Scholar
  67. 67.
    Penfield W. Some observations on amnesia. Am J Psychiatry. 1954;110(11):834.PubMedCrossRefGoogle Scholar
  68. 68.
    Squire LR. Mechanisms of memory. Science. 1986;232(4758):1612–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Squire LR, Wixted JT, Clark RE. Recognition memory and the medial temporal lobe: a new perspective. Nat Rev Neurosci. 2007;8(11):872–83.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Thompson RF. In search of memory traces. Annu Rev Psychol. 2005;56:1–23.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Thompson RF. An essential memory trace found. Behav Neurosci. 2013;127(5):669–75.CrossRefGoogle Scholar
  72. 72.
    Thompson RF, Kim JJ. Memory systems in the brain and localization of a memory. Proc Natl Acad Sci U S A. 1996;93(24):13438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Agren T, et al. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science. 2012;337(6101):1550–2.PubMedCrossRefGoogle Scholar
  74. 74.
    LeDoux JE, et al. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990;10(4):1062–9.PubMedCrossRefGoogle Scholar
  75. 75.
    LeDoux J. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.CrossRefGoogle Scholar
  76. 76.
    LeDoux J. The emotional brain, fear and the amygdala. Cell Mol Neurosci. 2003;23(4–5):727–38.CrossRefGoogle Scholar
  77. 77.
    Lee JH, Lee S, Kim JH. Amygdala circuits for fear memory: a key role for dopamine regulation. Neuroscientist. 2017;23:542–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Ehrlich I, et al. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62:757–71.CrossRefGoogle Scholar
  79. 79.
    Johansen JP, et al. Molecular mechanisms of fear learning and memory. Cell. 2011;147(3):509–24.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Maren S. The amygdala, synaptic plasticity, and fear memory. Ann N Y Acad Sci. 2003;985:106–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Morena M, et al. Upregulation of anandamide hydrolysis in the basolateral complex of amygdala reduces fear memory expression and indices of stress and anxiety. J Neurosci. 2019;39:1275–92.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484(7394):381–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Liu X, Ramirez S, Tonegawa S. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1633):20130142.CrossRefGoogle Scholar
  84. 84.
    Ramirez S, et al. Creating a false memory in the hippocampus. Science. 2013;341(6144):387–91.PubMedCrossRefGoogle Scholar
  85. 85.
    Ramirez S, et al. Activating positive memory engrams suppresses depression-like behaviour. Nature. 2015;522(7556):335–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Cohen Kadosh R, Walsh V. Cognitive neuroscience: rewired or crosswired brains? Curr Biol. 2006;16(22):R962–3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Martinez M, Calvo-Torrent A, Pico-Alfonso MA. Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggress Behav. 1998;24:241–56.CrossRefGoogle Scholar
  88. 88.
    Tsankova NM, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Vasconcelos M, Stein DJ, de Almeida RM. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade. Trends Psychiatry Psychother. 2015;37(2):51–66.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang J-H, et al. Prefrontal cortical neurons are recruited as secondary associative memory cells for associative memory and cognition. Biophys J. 2018;114(3):155a.CrossRefGoogle Scholar
  91. 91.
    Wang JH, et al. Secondary associative memory cells and their plasticity in the prefrontal cortex. Biophys J. 2019;116(3):427a.CrossRefGoogle Scholar
  92. 92.
    Zhao J, Wang D, Wang JH. Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Mol Brain. 2012;5:12.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.PubMedCrossRefGoogle Scholar
  94. 94.
    DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol. 1971;34(3):414–27.PubMedCrossRefGoogle Scholar
  95. 95.
    Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Harris KD, et al. Organization of cell assemblies in the hippocampus. Nature. 2003;424(6948):552–6.CrossRefGoogle Scholar
  97. 97.
    Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10(1):100–7.CrossRefGoogle Scholar
  98. 98.
    Jadhav SP, et al. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012;336(6087):1454–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kay K, et al. A hippocampal network for spatial coding during immobility and sleep. Nature. 2016;531(7593):185–90.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci. 1999;19(10):4090–101.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    McNaughton BL, Barnes CA, O’Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 1983;52(1):41–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yu JY, et al. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat Commun. 2018;9(1):2209.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Penfield W, Perot P. The Brain’s record of auditory and visual experience. A final summary and discussion. Brain. 1963;86:595–696.PubMedCrossRefGoogle Scholar
  104. 104.
    Sirota A, et al. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100(4):2065–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993;261(5124):1055–8.CrossRefGoogle Scholar
  107. 107.
    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wirth S, et al. Single neurons in the monkey hippocampus and learning of new associations. Science. 2003;300(5625):1578–81.CrossRefGoogle Scholar
  109. 109.
    Yokose J, et al. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science. 2017;355(6323):398–403.CrossRefGoogle Scholar
  110. 110.
    Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3(12):e402.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Khodagholy D, Gelinas JN, Buzsaki G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science. 2017;358(6361):369–72.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rothschild G, Eban E, Frank LM. A cortical-hippocampal-cortical loop of information processing during memory consolidation. Nat Neurosci. 2017;20(2):251–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Lansink CS, et al. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol. 2009;7(8):e1000173.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Takehara-Nishiuchi K, McNaughton BL. Spontaneous changes of neocortical code for associative memory during consolidation. Science. 2008;322(5903):960–3.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Girardeau G, Inema I, Buzsaki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci. 2017;20(11):1634–42.CrossRefGoogle Scholar
  116. 116.
    Varela C, et al. Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct. 2014;219(3):911–29.PubMedCrossRefGoogle Scholar
  117. 117.
    Nikolenko V, Poskanzer KE, Yuste R. Two-photon photostimulation and imaging of neural circuits. Nat Methods. 2007;4(11):943–50.CrossRefGoogle Scholar
  118. 118.
    Stosiek C, et al. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA. 2003;100(12):7319–24.PubMedCrossRefGoogle Scholar
  119. 119.
    Wang KH, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 2006;126(2):389–402.CrossRefGoogle Scholar
  120. 120.
    Mao D, et al. Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. Proc Natl Acad Sci U S A. 2018;115(31):8015–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Fu M, et al. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature. 2012;483(7387):92–5.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.Google Scholar
  123. 123.
    Sugiura H, et al. Transducing neuronal activity into dendritic spine morphology: new roles for p38 MAP kinase and N-cadherin. Neuroscientist. 2009;15(1):90–104.PubMedCrossRefGoogle Scholar
  124. 124.
    Thiagarajan TC, Piedras-Renteria ES, Tsien RW. Alpha- and beta-CaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002;36:1103–14.PubMedCrossRefGoogle Scholar
  125. 125.
    Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic maker for neuronal activity. Trends Neurosci. 1989;12(3):94–101.PubMedCrossRefGoogle Scholar
  126. 126.
    Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 1989;12(11):459–62.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Link W, et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995;92(12):5734–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Guzowski JF, et al. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999;2(12):1120–4.PubMedCrossRefGoogle Scholar
  129. 129.
    Reijmers LG, et al. Localization of a stable neural correlate of associative memory. Science. 2007;317(5842):1230–3.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tayler KK, et al. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol. 2013;23(2):99–106.CrossRefGoogle Scholar
  131. 131.
    Bissiere S, et al. Electrical synapses control hippocampal contributions to fear learning and memory. Science. 2011;331(6013):87–91.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Grundemann J, Luthi A. Ensemble coding in amygdala circuits for associative learning. Curr Opin Neurobiol. 2015;35:200–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Tanaka KZ, McHugh TJ. The hippocampal engram as a memory index. J Exp Neurosci. 2018;12:1179069518815942.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kiessling M, Gass P. Immediate early gene expression in experimental epilepsy. Brain Pathol. 1993;3(4):381–93.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog Brain Res. 2002;135:3–11.CrossRefGoogle Scholar
  136. 136.
    Wang X, et al. Persistent hyperactivity of hippocampal dentate interneurons after a silent period in the rat pilocarpine model of epilepsy. Front Cell Neurosci. 2016;10:94.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Simonato M, et al. Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy. Brain Res Mol Brain Res. 1991;11(2):115–24.CrossRefGoogle Scholar
  138. 138.
    Abe H, Nowak TS Jr. Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab. 2004;24(1):84–97.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bokesch PM, et al. Dextromethorphan inhibits ischemia-induced c-fos expression and delayed neuronal death in hippocampal neurons. Anesthesiology. 1994;81(2):470–7.CrossRefGoogle Scholar
  140. 140.
    Kiessling M, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab. 1993;13(6):914–24.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Asok A, et al. Molecular mechanisms of the memory trace. Trends Neurosci. 2019;42(1):14–22.PubMedCrossRefGoogle Scholar
  142. 142.
    Sossin WS. Molecular memory traces. Prog Brain Res. 2008;169:3–25.PubMedCrossRefGoogle Scholar
  143. 143.
    Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays. 2013;35(12):1050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Penfield W. Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proc Natl Acad Sci U S A. 1958;44(2):51–66.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rasmussen T, Penfield W. The human sensorimotor cortex as studied by electrical stimulation. Fed Proc. 1947;6(1 Pt 2):184.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Penfield W, Welch K. Instability of response to stimulation of the sensorimotor cortex of man. J Physiol. 1949;109(3–4):358–65, illustPubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ferry B, Roozendaal B, McGaugh JL. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol Psychiatry. 1999;46(9):1140–52.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Meneses A, Liy-Salmeron G. Serotonin and emotion, learning and memory. Rev Neurosci. 2012;23(5–6):543–53.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Roy DS, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature. 2016;531(7595):508–12.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Ryan TJ, et al. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007–13.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Cabeza R, et al. The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci. 2008;9(8):613–25.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Dubnau J, Chiang AS, Tully T. Neural substrates of memory: from synapse to system. J Neurobiol. 2003;54(1):238–53.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989;339(6221):215–8.CrossRefGoogle Scholar
  154. 154.
    Daoudal D, Debanne D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem. 2003;10:456–65.CrossRefGoogle Scholar
  155. 155.
    Bliss TVP, Collingridge GL. A synaptic model of memory: LTP in the hippocampus. Nature. 1993;361:31–9.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Malenka RC, Nicoll RA. Long-term potentiation – a decade of progress? Nat Neurosci. 1999;285:1870–4.Google Scholar
  157. 157.
    Chavez NLE, Halliwell JV, Bliss TV. A decrease in firing threshold observed after induction of the EPSP-spike (E-S) component of long-term potentiation in rat hippocampal slices. Exp Brain Res. 1990;79(3):633–41.Google Scholar
  158. 158.
    Collingridge GL, et al. Involvement of excitatory amino acid receptors in long-term potentiation in the Schaffer collateral-commissural pathway of rat hippocampal slices. Can J Physiol Pharmacol. 1991;69(7):1084–90.PubMedCrossRefGoogle Scholar
  159. 159.
    Wang J-H, Kelly PT. Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol Lond. 2001;533(2):407–22.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Liao D, et al. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci. 1999;2:37–43.CrossRefGoogle Scholar
  161. 161.
    Petralia RS, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci. 1999;2:31–6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Takumi Y, et al. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999;2:618–24.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Liao D-Z, Hessler NA, Malinow R. Activation of postsynaptic silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995;375:400–4.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989;245:862–6.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Nichols RA, et al. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature. 1990;343(6259):647–51.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Wang J-H, Kelly PT. Balance between postsynaptic Ca2+−dependent protein kinase and phosphatase activities controlling synaptic strength. Learn Mem. 1996;3:170–81.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Yang Z, et al. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget. 2017;8(42):72424–37.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Chen N, et al. The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006;340:151–7.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Chen N, et al. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006;346:281–7.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Chen N, et al. After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006;346:938–45.PubMedCrossRefGoogle Scholar
  171. 171.
    Chen N, Chen X, Wang J-H. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci. 2008;121(17):2961–71.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wang JH, et al. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008;121(17):2951–60.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ganguly K, Kiss L, Poo M-M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nat Neurosci. 2000;3(10):1018–26.PubMedCrossRefGoogle Scholar
  174. 174.
    Nick TA, Ribera AB. Synaptic activity modulates presynaptic excitability. Nat Neurosci. 2000;3(2):142–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Aizenmann C, Linden DJ. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar nuclear neurons. Nat Neurosci. 2000;3:109–11.CrossRefGoogle Scholar
  176. 176.
    Campanac E, Debanne D. Plasticity of neuronal excitability: Hebbian rules beyond the synapse. Arch Ital Biol. 2007;145(3–4):277–87.Google Scholar
  177. 177.
    Sourdet V, et al. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J Neurosci. 2003;23(32):10238–48.CrossRefGoogle Scholar
  178. 178.
    Desai NS, Rutherford L, Turrigiano GG. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci. 1999;2(6):515–20.PubMedCrossRefGoogle Scholar
  179. 179.
    Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.Google Scholar
  180. 180.
    Liu Y, et al. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget. 2017;8(68):112401–16.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Zhao X, et al. Coordinated plasticity among glutamatergic and GABAergic neurons and synapses in the barrel cortex is correlated to learning efficiency. Front Cell Neurosci. 2017;11(221):1–12.Google Scholar
  182. 182.
    Ashby MC, Isaac JT. Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron. 2011;70(3):510–21.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol. 2007;17(3):381–6.PubMedCrossRefGoogle Scholar
  184. 184.
    Fifkova E, Van Harreveld A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol. 1977;6:211–30.PubMedCrossRefGoogle Scholar
  185. 185.
    Fortin DA, Srivastava T, Soderling TR. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist. 2011;18(4):326–41.PubMedCrossRefGoogle Scholar
  186. 186.
    Hongpaisan J, Alkon DL. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci U S A. 2007;104(49):19571–6.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Kasai H, et al. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 2010;33(3):121–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Kitanishi T, et al. Experience-dependent, rapid structural changes in hippocampal pyramidal cell spines. Cereb Cortex. 2009;19(11):2572–8.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Lendvai B, et al. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000;404:876–81.PubMedCrossRefGoogle Scholar
  190. 190.
    Leuner B, Falduto J, Shors TJ. Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci. 2003;23(2):659–65.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Matsuzaki M, et al. Structural basis of long-term potentiation in single dendritic spines. Nature. 2004;429(6993):761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Moczulska KE, et al. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc Natl Acad Sci U S A. 2013;110(45):18315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Murakoshi H, Yasuda R. Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci. 2012;35(2):135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Zuo Y, Perkon I, Diamond ME. Whisking and whisker kinematics during a texture classification task. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366(1581):3058–69.CrossRefGoogle Scholar
  195. 195.
    Patterson M, Yasuda R. Signalling pathways underlying structural plasticity of dendritic spines. Br J Pharmacol. 2011;163(8):1626–38.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Tanaka J, et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008;319(5870):1683–7.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Yuste R, Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995;375:682–4.PubMedCrossRefGoogle Scholar
  198. 198.
    Harnett MT, et al. Synaptic amplification by dendritic spines enhances input cooperativity. Nature. 2012;491(7425):599–602.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Jung CK, Herms J. Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. Cereb Cortex. 2014;24:377–84.PubMedCrossRefGoogle Scholar
  200. 200.
    Schiegg A, Gerstner W, Ritz R, Leo van Hemmen J. Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. J Neurophysiol. 1995;74(3):1046–55.PubMedCrossRefGoogle Scholar
  201. 201.
    Garin-Aguilar ME, et al. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats. Front Behav Neurosci. 2012;6:12.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Leuner B, Shors TJ. New spines, new memories. Mol Neurobiol. 2004;29(2):117–30.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Sanders J, et al. Elimination of dendritic spines with long-term memory is specific to active circuits. J Neurosci. 2012;32(36):12570–8.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Vees AM, et al. Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J Comp Neurol. 1998;400(1):110–24.PubMedCrossRefGoogle Scholar
  205. 205.
    Stevens CF. Strengthening the synapses news. Nature. 1989;338(6215):460–1.PubMedCrossRefGoogle Scholar
  206. 206.
    Yu J, et al. Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011;6(9):e25219.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yu J, Qian H, Wang JH. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012;5(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Wang J-H, et al. Both glutamatergic and Gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(3 Supplement):481a.CrossRefGoogle Scholar
  209. 209.
    Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.Google Scholar
  210. 210.
    Pavlov I. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Translated by Anrep GV. Nature. 1927;121(3052):662–4.Google Scholar
  211. 211.
    Thorndike EL. Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl. 1901;2:1–109.Google Scholar
  212. 212.
    Davitz JR, et al. Conditioning of fear: a function of the delay of reinforcement. Am J Psychol. 1957;70(1):69–74.PubMedCrossRefGoogle Scholar
  213. 213.
    Strouthes A. Desensitization and fear conditioning. Psychol Rep. 1965;17(3):787–90.PubMedCrossRefGoogle Scholar
  214. 214.
    Weisz K, Vasenszky S, Weisz P. A method for producing a conditioned fear reflex in rats. Kiserl Orvostud. 1953;5(3):199–202.PubMedGoogle Scholar
  215. 215.
    Pennypacker HS, et al. An apparatus and procedure for conditioning the eye-blink reflex in the squirrel monkey. J Exp Anal Behav. 1966;9(5):601–4.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Theios J, Brelsford JW Jr. A Markov model for classical conditioning: application to eye-blink conditioning in rabbits. Psychol Rev. 1966;73(5):393–408.PubMedCrossRefGoogle Scholar
  217. 217.
    Olton DS, Isaacson RL. Importance of spatial location in active avoidance tasks. J Comp Physiol Psychol. 1968;65(3):535–9.PubMedCrossRefGoogle Scholar
  218. 218.
    Olton DS. Spatial memory. Sci Am. 1977;236(6):82–4, 89–94, 96, 98PubMedCrossRefGoogle Scholar
  219. 219.
    Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.PubMedCrossRefGoogle Scholar
  220. 220.
    Wang J-H, et al. Neurons in barrel cortex turn into processing whisker and odor signals: a novel form of associative learning. Soc Neurosci. 2013;653(14):WW11.Google Scholar
  221. 221.
    Wang JH, et al. Upregulation of glutamatergic receptor-channels is associated with cross-modal reflexes encoded in barrel cortex and piriform cortex. Biophys J. 2014;106(2 Supplement):191a.CrossRefGoogle Scholar
  222. 222.
    DeLong MR. Activity of basal ganglia neurons during movement. Brain Res. 1972;40(1):127–35.PubMedCrossRefGoogle Scholar
  223. 223.
    DeLong MR. Putamen: activity of single units during slow and rapid arm movements. Science. 1973;179(4079):1240–2.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jin-Hui Wang
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations