Skip to main content

Molecular Mechanisms of Phytochemical Actions in Cancer

  • Chapter
  • First Online:
Cancer Genetics and Therapeutics
  • 514 Accesses

Abstract

Extensive research has shown that a broad range of phytochemicals are important in chemoprevention and chemosensitization. Phytochemicals not only work on genetic pathways; they are responsible for modulating epigenetic control mechanisms like histone acetylation and methylation, DNA methylation, and miRNA posttranslational silencing. We start the chapter with a review of these epigenetic control mechanisms. Inflammation and oxidative stress are two most important causes of carcinogenesis, and we review the molecular mechanisms involved in these two processes, in particular the Keap1-Nrf2 pathway. We then discuss the roles of phytochemicals in mitigating oxidative stress and inflammation. Chemoprevention is important for reducing the burden of cancer worldwide; we review the roles of phytochemicals in chemoprevention next. Finally we discuss how phytochemicals can sensitize cancer cells for enhancing the effects of chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alberts, A.D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)

    Google Scholar 

  2. W. Li, G. Yue, C. Zhang, R. Wu, A.Y. Yang, J. Gasper, A.-N.T. Kong, Dietary phytochemicals and cancer chemoprevention: a perspective on oxidative stress, inflammation, and epigenetics. Chem. Res. Toxicol. 29, 2071–2095 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. A. Raghunath, K. Sundarraj, R. Nagarajan, F. Arfuso, J. Bian, A.P. Kumar, G. Sethi, E. Perumal, Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 17, 297–314 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Nguyen, P. Nioi, C.B. Pickett, The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284(20), 13291–13295 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G.-Y. Liou, P. Storz, Reactive oxygen species in cancer. Free Radic. Res. 44(5) (2010). https://doi.org/10.3109/10715761003667554

    Article  CAS  PubMed  Google Scholar 

  6. A. Hryniuk, S. Grainger, J.G. Savory, D. Lohnes, Cdx1 and Cdx2 function as tumor suppressors. J. Biol. Chem. 289(48), 33343–33354 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Zhang, K. Kang, K.C. Kim, S.Y. Na, W.Y. Chang, G.Y. Kim, H.S. Kim, J.W. Hyun, Oxydative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 524, 214–219 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. P.K.S. Mahalingaiah, L. Ponnusamy, K.P. Singh, Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 8(7), 11127–11143 (2017)

    Article  PubMed  Google Scholar 

  9. F. Ito, Y. Yamada, A. Shigemitsu, M. Akinishi, H. Kaniwa, R. Miyake, S. Yamanaka, H. Kobayashi, Role of oxidative stress in epigenetic modification in endometriosis. Reprod. Sci. 24(11), 1493–1502 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. A. Guillaumet-Atkins, Y. Yañez, M..D. Peris-Diaz, I. Calabria, C. Palanca-Ballester, J. Sandoval, Epigenetics and oxidative stress in aging. Oxid. Med. Cell. Longev. 2017, 9175806 (2017)

    Google Scholar 

  11. P.K. Mahalingaiah, L. Ponnusamy, K.P. Singh, Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 153, 41–56 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. P. Katakwar, R. Metgud, S. Naik, R. Mittal, Oxidative stress markers in oral cancer: a review. J. Cancer Res. Ther. 12, 438–446 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. M.S. Cooke, M.D. Evans, M. Dizdaroglu, J. Lune, Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17(10), 1195–214 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. L.M. Coussens, Z. Werb, Inflammation and cancer. Nature 19, 860–867 (2002)

    Article  CAS  Google Scholar 

  15. P. Thejass, G. Kuttan, Inhibition of endothelial cell differentiation and proinflammatory cytokine production during angiogenesis by allyl isothiocyanate and phenyl isothiocyanate. Integr. Cancer Ther. 6, 389–399 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. J.N. Sharma, A. Al-Omran, S.S. Parvathy, Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6), 252–259 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. N.M. Reddy, S.R. Kleeberger, T.W. Kensler, M. Yamamoto, P.M. Hassoun, S.P. Reddy, Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. J. Immunol. 182, 7264–7271 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. K.A. Steinmetz, J.D. Potter, Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2(5), 325–357 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. J.L. Martindale, N.J. Holbrook, Cellular response to oxidative stress: signalling for suicide and survival. J. Cell. Physiol. 192(1), 1–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. A. Zeke, M. Misheva, A. Reményi, M.A. Bogoyevitch, JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol. Mol. Biol. Rev. 80(3), 793–835 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.K. Katiyar, F. Afaq, K. Azizuddin, H. Mukhtar, Inhibition of UVB-inducedoxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. 176, 110–117 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. S.K. Manna, A. Mukhopadhyay, B.B. Aggarwal, Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 164, 6509–6519 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. R. Yu, V. Hebbar, D.W. Kim, S. Mandlekar, J.M. Pezzuto, A.N. Kong, Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways. Mol. Pharmacol. 60, 217–224 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. F. Yin, A.E. Giuliano, A.J. van Herle, Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 19, 4297–4303 (1999)

    CAS  PubMed  Google Scholar 

  26. X. Yan, M. Qi, P. Li, Y. Zhan, H. Shao, Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 7, 50 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. B. Sung, H.Y. Chung, N.D. Kim, Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev. 21(4), 216–226 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  28. N. Ahmad, V.M. Adhami, F. Afaq, D.K. Feyes, H. Mukhtar, Resveratrol causes WAF-1/p21-mediated G 1-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin. Cancer Res. 7, 1466–1473 (2001)

    CAS  PubMed  Google Scholar 

  29. J.-H. Ko, G. Sethi, J.-Y. Um, M.K. Shanmugam, F. Arfuso, A.P. Kumar, A. Bishayee, K.S. Ahn, The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 18(12), 2589 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  30. Q.B. She, C. Huang, Y. Zhang, Z. Dong, Involvement of c-jun NH2-terminal kinases in resveratrol-induced activation of p53 and apoptosis. Mol. Carcinogenesis 33, 244–250 (2002)

    Article  CAS  Google Scholar 

  31. M. Mouria, A.S. Gukovskaya, Y. Jung, P. Buechler, O.J. Hines, H.A. Reber, S.J. Pandol, Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int. J. Cancer 98, 761–769 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. M.K. Johnson, G. Loo, Effects of epigallocatechin gallate and quercetin on oxidative DNA damage to cellular DNA. Mutat. Res. 459, 211–218 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. M.R. Kelly, J. Xu, K.E. Alexander, G. Loo, Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat. Res. 485, 309–318 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. X. Mao, C. Gu, D. Chen, B. Yu, J. He, Oxidative stress-induced diseases and tea polyphenols. Oncotarget 8(46), 81649–81661 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  35. G. Loo, Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation. J. Nutr. Biochem. 14(2), 64–73 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. F. Kassie, B. Pool-Zobel, W. Parzefall, S. Knasmuller, Genotoxic effects of benzyl isothiocyanate, a natural chemopreventive agent. Mutagenesis 14, 595–603 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Nakamura, H. Ohigashi, S. Masuda, A. Murakami, Y. Morimitsu, Y. Kawamoto, T. Osawa, M. Imagawa, K. Uchida, Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res. 60, 219–225 (2000)

    CAS  PubMed  Google Scholar 

  38. L. Gamet-Payrastre, P. Li, S. Lumeau, G. Cassar, M.-A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, F. Terce, Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60, 1426–1433 (2000)

    CAS  PubMed  Google Scholar 

  39. C. Fimognari, M. Nusse, R. Cesari, R. Iori, G. Cantelli-Forti, P. Hrelia, Growth inhibition, cell cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23, 581–586 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. Y.-R. Chen, W. Wang, A.-N.T. Kong, T.-H. Tan, Molecular mechanisms of c-Jun N-terminal kinase-mediated apoptosis induced by anticarcinogenic isothiocyanates. J. Biol. Chem. 273(3), 1769–1775 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. S.M. de Figueiredo, S.A. Filho, J.A. Nogueira-Machado, R.B. Caligiorne, The anti-oxidant properties of isothiocyanates: a review. Recent Pat. Endocr. Metab. Immune Drug Discov. 7(3), 213–225 (2013)

    Article  PubMed  CAS  Google Scholar 

  42. L. Valgimigli, R. Iori, Antioxidant and pro-oxidant capacities of ITCs. Environ. Mol. Mutagen. 50, 222–237 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. T. Liu, L. Zhang, D. Joo, S.-C. Sun NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017)

    Google Scholar 

  44. N. M’hiri, I. Ioannou, M. Ghoul, N.M. Boudhrioua, Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: a review. Food Rev. Int. 33(6), 587–619 (2017)

    Article  CAS  Google Scholar 

  45. T. Etoh, Y.P. Kim, M. Hayashi, M. Suzawa, S. Li, C. Ho, K. Komiyama, Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW 246.7 macrophages. Funct. Foods Health Dis. 3, 242–253 (2013)

    Article  Google Scholar 

  46. A. Fazio, P. Plastina, J. Meijerink, R.F. Witkamp, B. Gabriele, Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem. 140, 817–824 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. F.C. Lau, D.F. Bielinski, J.A. Joseph, Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 85, 1010–1017 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. F. Zhu, B. Du, B. Xu, Anti-inflammatory effects of phytochemicals from fruits, vegetables and food legumes: a review. Crit. Rev. Food Sci. Nutr. 58(8), 1260–1270 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. G. Grosso, F. Bella, J. Godos, S. Sciacca, D. Del Rio, S. Ray, F. Galvano, E.L. Giovannucci, Possible role of diet in cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 75(6), 405–419 (2017)

    Article  PubMed  Google Scholar 

  50. S.S. Boyanapalli, A.-N. Kong, “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological and inflammatory diseases. Curr. Pharmacol. Rep. 1, 129–139 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. L. Shu, K.-L. Cheung, T.O. Khor, C. Chen, A.-N. Kong, Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 29, 483–502 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. L. Das, M. Vinayak, Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signaling and modulation of inflammation in prevention of cancer. PLoS One 10, e0124000 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. B. Chen, Y. Zhang, Y. Wang, J. Rao, X. Jiang, Z. Xu, Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated downregulation of Fen1 expression. J. Steroid Biochem. Mol. Biol. 143, 11–18 (2014)

    Article  CAS  PubMed  Google Scholar 

  54. S.G. Han, S.S. Han, M. Toborek, B. Hennig, EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol. 261, 181–188 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R. Kanlaya, S. Khamchun, C. Kapincharanon, B. Thongboonkerd, Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci. Rep. 6, 30233 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Z. Jian, K. Li, L. Liu, Y. Zhang, Z. Zhou, C. Li, T. Gao, Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. J. Invest. Dermatol. 131(7), 1420–1427 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. X. Zhai, M. Lin, F. Zhang, Y. Hu, X. Xu, Y. Li, K. Liu, X. Ma, X. Tian, J. Yao, Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol. Nutr. Food Res. 57, 249–259 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. J.V. Higdon, B. Delage, D.E. Williams, R.H. Dashwood, Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 55(3), 224–236 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. X. Wu, Q.-h. Zhou, K. Xu, Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin. 30(5), 501–512 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. L.W. Wattenberg, Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J. Natl. Cancer Inst. 58, 395–398 (1977)

    Article  CAS  PubMed  Google Scholar 

  61. L.W. Wattenberg, Inhibition effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8, 1971–1973 (1987)

    Article  CAS  PubMed  Google Scholar 

  62. M. Ramos-Gomez, M.K. Kwak, P.M. Dolan, K. Itoh, M. Yamamoto, P. Talalay, T.W. Kensler, Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. 98, 3410–3415 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. T.O. Khor, M.T. Huang, A. Prawan, Y. Liu, X. Hao, S. Yu, W.K. Cheung, J.Y. Chan, B. Reddy, C.S. Yang, A.N. Kong, Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 1, 187–191 (2008)

    Article  CAS  Google Scholar 

  64. F. Hong, M.L. Freeman, D.C. Liebler, Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 18, 1917–1926 (2005)

    Article  CAS  PubMed  Google Scholar 

  65. C. Xu, X. Yuan, Z. Pan, G. Shen, J.H. Kim, S. Yu, T.O. Khor, W. Li, J. Ma, A.N. Kong, Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 5, 1918–1926 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. W. Tang, J.W. Liu, W.M. Zhao, D.Z. Wei, J.J. Zhong, Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci. 80(3), 205–211 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. J.Y. Cheung, R.C. Ong, Y.K. Suen, V. Ooi, H.N. Wong, T.C. Mak, K.P. Fung, B. Yu, S.K. Kong, Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Lett. 217(2), 203–211 (2005)

    Article  PubMed  CAS  Google Scholar 

  68. M.S. Lee, J.C. Yuet-Wa, S.K. Kong, B. Yu, V.O. Eng-Choon, H.W. Nai-Ching, T.M. Chung-Wai, K.P. Fung, Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol. Ther. 4(11), 1248–1254 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. A.K. Taraphdar, M. Roy, R.K. Bhattacharya, Natural products as inducers of apoptosis: implication for cancer therapy and prevention. Curr. Sci. 80(11), 1387–1396 (2001)

    CAS  Google Scholar 

  70. I.-S. Lee, A. Nishikawa, F. Furukawa, K. Kasahara, S.-U. Kim, Effects of Selaginella tamariscina on in vitro tumor cell growth, p53 expression, G1 arrest and in vivo gastric cell proliferation. Cancer Lett. 144, 93–99 (1999)

    Article  CAS  PubMed  Google Scholar 

  71. W. Ren, D.G. Tang, Extract of Solanum muricatum (Pepino/CSG) inhibits tumor growth by inducing apoptosis. Anticancer Res. 19(1A), 403–408 (1999)

    CAS  PubMed  Google Scholar 

  72. M. Inoue, R. Suzuki, T. Koide, N. Sakaguchi, Y. Ogihara, Y. Yabu, Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204(2), 898–904 (1994)

    Article  CAS  PubMed  Google Scholar 

  73. M. Roy, S. Chakraborty, M. Siddiqi, R.K. Bhattacharya, Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac. J. Cancer Prev. 3(1), 61–67 (2002)

    PubMed  Google Scholar 

  74. S. Chakrabarty, M. Roy, B. Hazra, R.K. Bhattacharya, Induction of apoptosis in human cancer cell lines by diospyrin, a plant derived bisnaphthoquinonoid and its synthetic derivatives. Cancer Lett. 188, 85–93 (2002)

    Article  CAS  PubMed  Google Scholar 

  75. T. Kundu, S. Dey, M. Roy, M. Siddiqi, B.K. Bhattacharya, Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin. Cancer Lett. 230(1), 111–121 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. T. Kundu, R.K. Bhattacharya, M. Siddiqi, M. Roy, Correlation of apoptosis with comet formation induced by tea polyphenols in human leukaemia cells. J. Environ. Pathol. Toxicol. Oncol. 24(2), 89–102 (2005)

    Article  Google Scholar 

  77. S. Chakraborty, T. Kundu, R.K. Bhattacharya, M. Siddiqi, M. Roy, Tea induced apoptosis in human leukemia cell K562 as assessed by comet formation. Asian Pac. J. Cancer Prev. 7(2), 201–207 (2006)

    PubMed  Google Scholar 

  78. S. Mukherjee, U. Ghosh, N.P. Bhattacharya, R.K. Bhattacharya, S. Dey, M. Roy, Curcumin induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol. Cell. Biochem. 297, 31–39 (2007)

    Article  CAS  Google Scholar 

  79. S. Mukherjee, R. Sarkar, J. Biswas, M. Roy, Curcumin inhibits histone deacetylase leading to cell cycle arrest and apoptosis via upregulation of p21 in breast cancer cell lines. Int. J. Green Nanotechnol. 4, 183–197 (2012)

    Article  CAS  Google Scholar 

  80. M. Roy, S. Mukherjee, J. Biswas, Inhibition of an epigenetic modulator, histone deacetylase by PEITC in breast cancer - a detailed mechanistic approach. Int. J. Ther. Appl. 5, 1–13 (2012)

    Google Scholar 

  81. R. Sarkar, S. Mukherjee, J. Biswas, M. Roy, Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem. Biophys. Res. Commun. 427, 80–85 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. R. Sarkar, S. Mukherjee, M. Roy, Targeting heat shock proteins (HSPs) by phenethyl isothiocyanate results in cell cycle arrest and apoptosis of human breast cancer cells. Nutr. Cancer 65(3), 1–14 (2013)

    Google Scholar 

  83. F.H. Igney, P.H. Krammer, Death and anti-death: tumor resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002)

    Article  CAS  PubMed  Google Scholar 

  84. B.S. Vinod, T.T. Maliekal, R.J. Anto, Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid. Redox Signal. 18(11), 1307–1348 (2013)

    Article  CAS  PubMed  Google Scholar 

  85. L. Campos, J.P. Rouault, O. Sabido, P. Oriol, N. Roubi, C. Vasselon, E. Archimbaud, J.P. Magaud, D. Guyotat, High expression of BCL-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81, 3091–3096 (1993)

    CAS  PubMed  Google Scholar 

  86. M. Weller, U. Malipiero, A. Aguzzi, J.C. Reed, A. Fontana, Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J. Clin. Invest. 95, 2633–2643 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O. Hermine, C. Haioun, E. Lepage, M.F. d’Agay, J. Briere, C. Lavignac, G. Fillet, G. Salles, J.P. Marolleau, J. Diebold, F. Reyas, P. Gaulard, Prognostic significance of BCL-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 87, 265–272 (1996)

    Google Scholar 

  88. E. Coustan-Smith, A. Kitanaka, C.H. Pui, L. McNinch, W.E. Evans, S.C. Raimondi, F.G. Behm, M. Aricò, D. Campana, Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87, 1140–1146 (1996)

    CAS  PubMed  Google Scholar 

  89. S. Ugurel, G. Rappl, W. Tilgen, U. Reinhold, Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin. Cancer Res. 7, 1282–1286 (2001)

    CAS  PubMed  Google Scholar 

  90. C.D. Gerharz, U. Ramp, M. Déjosez, C. Mahotka, B. Czarnotta, U. Bretschneider, I. Lorenz, M. Müller, P.H. Krammer, H.E. Gabbert, Resistance to CD95 (APO-1/Fas)-mediated apoptosis in human renal cell carcinomas: an important factor for evasion from negative growth control. Lab. Invest. 79, 1521–1534 (1999)

    CAS  PubMed  Google Scholar 

  91. A.R. Safa, Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J. Carcinog. Mutagen. Suppl. 6, 003 (2013). https://doi.org/10.4172/2157-2518.S6-003

    Google Scholar 

  92. N. Rampino, H. Yamamoto, Y. Ionov, Y. Li, H. Sawai, J.C. Reed, M. Perucho, Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997)

    Article  CAS  PubMed  Google Scholar 

  93. J.P. Meijerink, E.J. Mensink, K. Wang, T.W. Sedlak, A.W. Slöetjes, T. de Witte, G. Waksman, S.J. Korsmeyer, Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991–2997 (1998)

    CAS  PubMed  Google Scholar 

  94. S. Krajewski, C. Blomqvist, K. Franssila, M. Krajewska, V.M. Wasenius, E. Niskanen, S. Nordling, J.C. Reed, Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55, 4471–4478 (1995)

    CAS  PubMed  Google Scholar 

  95. A. Arlt, A. Gehrz, S. Müerköster, J. Vorndamm, M.L. Kruse, U.R. Fölsch, H. Schäfer, Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22(21), 3243–3251 (2003)

    Article  CAS  PubMed  Google Scholar 

  96. A.B. Kunnumakkara, S. Guha, S. Krishnan, P. Digaradjane, J. Gelovani, B.B. Aggarwal, Curcumin potentiates anti-tumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB-regulated gene products. Cancer Res. 67, 3853–3861 (2007)

    Article  CAS  PubMed  Google Scholar 

  97. S. Lev-Ari, A. Vexler, A. Starr, M. Ashkenazy-Voghera, J. Greif, D. Aderka, R. Ben-Yosef, Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest. 25, 411–418 (2007)

    Article  CAS  PubMed  Google Scholar 

  98. G. Du, H. Lin, M. Wang, S. Zhang, X. Wu, L. Lu, L. Ji, L. Tu, Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on H1F-1alpha in tumor and normal cells. Cancer Chemother. Pharmacol. 65, 277–287 (2010)

    Article  CAS  PubMed  Google Scholar 

  99. F.H. Psahoulia, K.G. Drosopoulos, L. Doubravska, L. Andera, A. Pintzas, Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther. 6, 2591–2599 (2007)

    Article  CAS  PubMed  Google Scholar 

  100. S.C. Gupta, R. Kannappan, S. Reuter, J.H. Kim, B.B. Aggarwal, Chemosensitization of tumors by resveratrol. Ann. N. Y. Acad. Sci. 1215, 150–160 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. Shankar, Q. Chen, I. Siddiqui, K. Sarva, R.K. Srivastava, Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4’, r tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J. Mol. Signal. 2, 7 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. I.A. Siddiqui, A. Malik, V.M. Adhami, M. Asim, B.B. Hafeez, S. Sarfaraz, H. Mukhtar, Green tea polyphenol EGCG sensitizes human prostrate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27, 2055–2063 (2008)

    Article  CAS  PubMed  Google Scholar 

  103. M. Nihal, H. Ahsan, I.A. Siddiqui, H. Mukhtar, N. Ahmad, G.S. Wood, Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle 8, 2057–2063 (2009)

    Article  CAS  PubMed  Google Scholar 

  104. M.J. Scandlyn, E.C. Stuart, T.J. Somers-Edgar, A.R. Menzies, R.J. Rosengren, A new role for tamoxifen in oestrogen receptor-negative breast cancer when it is combined with epigallocatechin gallate. Br. J. Cancer 99, 1056–1063 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. B. Zhang, Z.L. Shi, B. Liu, X.B. Yan, J. Feng, H.M. Tao, Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma: the role of Akt and nuclear factor-κB. Anticancer Drugs 21, 288–296 (2010)

    Article  CAS  PubMed  Google Scholar 

  106. B.F. El-Rayes, S. Ali, I.F. Ali, P.A. Philip, J. Abbruzzese, F.H. Sarkar, Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-κB. Cancer Res. 66, 10553–10559 (2006)

    Article  CAS  PubMed  Google Scholar 

  107. C.Y. Jin, C. Park, J. Cheong, B.T. Choi, T.H. Lee, J.D. Lee, W.H. Lee, G.Y. Kim, C.H. Ryu, Y. H. Choi, Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Lett. 257, 56–64 (2007)

    Article  CAS  PubMed  Google Scholar 

  108. S.Y. Park, D.W. Seol, Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun. 295, 515–518 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, M., Datta, A. (2019). Molecular Mechanisms of Phytochemical Actions in Cancer. In: Cancer Genetics and Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9471-3_5

Download citation

Publish with us

Policies and ethics