Characterization of Rolling Element Bearing Data Using the Gottwald and Melbourne’s 0-1 Test and the Hugichi Fractal Dimension

  • C. A. Kitio KwuimyEmail author
  • T.  Haj Mohamad
  • C. Nataraj
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)


The paper considers the characterization of the data extracted from an experimental model of rotor supported on rolling elements. A description of the method is provided as well as an illustration using a standard dynamic map. The 0-1 test for chaos and the Higuchi dimension are shown to be effective tool in the identification of chaotic behavior of the system bearing with and without faults.



Part of this work was done during the Postdoctoral fellow of C.A.K. Kwuimy at the VCADS. He would like to thank Dr. C. Nataraj and the US Office of Naval Research for the financial support (grant N00014-13-1-0485).


  1. 1.
    E.A. Boyd, Analytics 7, 6 (2012)Google Scholar
  2. 2.
    A. Galka, Topics in Nonlinear Time Series Analysis (World Scienti, 2000)Google Scholar
  3. 3.
    H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (University Press-Cambridge, 2004)Google Scholar
  4. 4.
    D. Kateris, D. Moshou, X.E. Pantazi, I. Gravalos, N. Sawalhi, S. Loutridis, J. Mech. Sci. Technol. 28, 1 (2014)CrossRefGoogle Scholar
  5. 5.
    H.D.I. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1996)CrossRefGoogle Scholar
  6. 6.
    C.A.K. Kwuimy, C. Nataraj, Structural Nonlinear Dynamics & Control and Diagnosis (Springer, 2015), pp. 97–123Google Scholar
  7. 7.
    C.A.K. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438(5–6), 237 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Marwan, J. Kurths, P. Saparin, Phys. Lett. A 360, 545–551 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Gottwald, I. Melbourne, SIAM J. Appl. Dyn. Syst. 8, 129 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G.A. Gottwald, I. Melbourne, Physics D pp. 100–110 (2005)Google Scholar
  12. 12.
    G.A. Gottwald, I. Melbourne, Proceeding R. Soc. A 603–611 (2004)Google Scholar
  13. 13.
    C.A.K. Kwuimy, M. Samadani, P. Kankar, C. Nataraj, ASME J. Comput. Nonlinear Dyn. (2014)Google Scholar
  14. 14.
    C.A.K. Kwuimy, M. Samadani, K. Kappaganthu, C. Nataraj, in International Conference on Vibration Engineering and Technology of Machinery (2014)Google Scholar
  15. 15.
    T.H. Mohamad, M. Samadani, C.  Nataraj, J. Vib. Acoust. 140(6), 061009 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Higuchi, Physica 23, 277 (1988)Google Scholar
  17. 17.
    B. Raghavendra, D. Dutt, Computers in biology and medicine, pp. 1006–1012 (2009)Google Scholar
  18. 18.
    J.A. Balderas Lopez, J.L.del Rio Correa, G. Galvez Coyt, A. Munoz Diosdado, F.A. Brown, Revista Mexicana de Fisica 1–6 (2009)Google Scholar
  19. 19.
    G. Litak, A. Syta, M. Wiercigroch, Chaos Solitons Fractals 40(5), 2095 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Chatterton, P. Pennacchi, A. Vania, P.V. Dang, F. Cangioli, in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 8 (2015), pp. 46609Google Scholar
  21. 21.
    L. Zachilas, I.N. Psarianos, J. Appl. Math. 681296 (2012)Google Scholar
  22. 22.
    F. Leon, Neurocomputing 173–186 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Litak, J.T. Sawick, ZAMM–J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 89(7), 587–592 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • C. A. Kitio Kwuimy
    • 1
    Email author
  • T.  Haj Mohamad
    • 2
  • C. Nataraj
    • 2
  1. 1.Department of Engineering Education, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA
  2. 2.Villanova Center for Analytics of Dynamic Systems (VCADS)Villanova UniversityVillanovaUSA

Personalised recommendations