Skip to main content

Materials and Methods

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The goal of this chapter is to better understand the bioprinting process by theoretically analyzing the correlated topics and questions. It summarizes the general criteria and research route for bioprinting. Despite numerous microextrusion bioprinting strategies developed, very little knowledge has been defined or discovered in terms of the nature of bioprinting. We believe that these strategies share some common features (e.g., one-dimensional filament as building block) that would lead to a better understanding and exploitation of this technology. This chapter will first analyze the general process of microextrusion bioprinting step by step and extract critical questions from each step. The general criteria will be subsequently concluded in terms of structural fidelity and cell protection. Based on the bioink crosslinking mechanisms, such criteria will be used to guide the design of the bioprinting process, covering the filament formation, deposition, and structure stabilization. Overall, a research route will be presented, which will be used in the subsequent case studies. Moreover, this chapter will introduce some general methods used in the study regarding rheology, 3D printability, shear stress determination, and cellular characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TB, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Article  CAS  Google Scholar 

  2. Blaeser A, Campos DFD, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333

    Article  CAS  Google Scholar 

  3. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J (2016) Research on the printability of hydrogels in 3D bioprinting. Sci Rep 6:29977

    Article  CAS  Google Scholar 

  4. Chung JHY, Naficy S, Yue ZL, Kapsa R, Quigley A, Moulton SE, Wallace GG (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1(7):763–773

    Article  CAS  Google Scholar 

  5. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS (2017) ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater 6(16)

    Article  CAS  Google Scholar 

  6. Radhakrishnan J, Krishnan UM, Sethuraman S (2014) Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 32(2):449–461

    Article  CAS  Google Scholar 

  7. Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  Google Scholar 

  8. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684

    Article  CAS  Google Scholar 

  9. Yan KC, Nair K, Sun W (2010) Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs. J Biomech 43(6):1031–1038

    Article  Google Scholar 

  10. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC (1999) Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res 46(4):520–530

    Article  CAS  Google Scholar 

  11. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  Google Scholar 

  12. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    Article  CAS  Google Scholar 

  13. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311

    Article  CAS  Google Scholar 

  14. Zhang T, Yan KC, Ouyang L, Sun W (2013) Mechanical characterization of bioprinted soft tissue models. Biofabrication 5(4):045010

    Article  CAS  Google Scholar 

  15. Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8(3):035020

    Article  CAS  Google Scholar 

  16. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4(8):1168–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliang Ouyang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouyang, L. (2019). Materials and Methods. In: Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-9455-3_3

Download citation

Publish with us

Policies and ethics