Skip to main content

Coverage Probability Analysis of D2D Communication Based on Stochastic Geometry Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 571))

Abstract

Relaying is a common application of D2D communication, which optimizes system capacity and increases the coverage of mobile cellular networks on shared downlink resources. We established a network model of cellular base-stations and adopted the theory of stochastic geometry. Based on the model, the coverage probability analysis of the network is analyzed to select a specific user as the relay node, and the relay point uses the forwarding strategy of the decoding and forwarding. Subsequently, D2D communication can help the edge user to communicate with the base-station. The coverage probability expression of the downlink cellular network is defined, then the coverage probability of the cellular link, the base-station to the relay link, and the relay to the edge user link are derived. Simulation results show that with the increasing of density of the macro base-stations, the coverage probability of the whole network will increase and the final coverage probability will become saturated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wyner AD (1975) The wiretap channel. Bell Labs Tech J 54(8):1355–1387

    Article  Google Scholar 

  2. Somekh O, Zaidel B, Shamai S (2007) Sum rate characterization of joint multiple cell-site processing. IEEE Trans Inf Theory 53(12):4473–4497

    Article  MathSciNet  Google Scholar 

  3. Jing S, Tse DNC, Soriaga JB et al (2008) Multicell downlink capacity with coordinated processing. EURASIP J Wireless Commun Netw: 586878

    Google Scholar 

  4. ElSawy H, Hossain E, Haenggi M (2013) Stochastic geometry for modeling, analysis and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surv Tutorials 15(3):996–1019

    Article  Google Scholar 

  5. Haenggi M, Andrews J, Baccelli F et al (2009) Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun 27(7):1029–1046

    Article  Google Scholar 

  6. Lee CH, Shih CY, Chen YS (2013) Stochastic geometry based models for modeling cellular networks in urban aeas. Wireless Netw 19(6):1063–1072

    Article  Google Scholar 

  7. Ganti RK, Bacelli F, Andrews JG (2011) A new way of computing rate in cellular networks. In: IEEE international conference communications (ICC), June 2011

    Google Scholar 

  8. Andrews JG, Baccelli F, Ganti RK (2011) A tractable approach stochastic geometry for wireless networks coverage and rate in cellular networks. IEEE Trans Commun 59(11):3122–3134

    Article  Google Scholar 

  9. Universal Mobile Telecommunications System (UMTS), Selection procedures for the choice of radio transmission technologies of the UMTS, UMTS 30.03, version 3.2.0

    Google Scholar 

  10. Guidelines for evaluation of radio interface technologies for IMT-advanced, report ITU-R M.2135

    Google Scholar 

  11. Fodor G et al (2012) Design aspects of network assisted device-to-device communications. IEEE Commun Mag 50(3):170–177

    Article  Google Scholar 

  12. Peng T, Lu Q, Wang H, Xu S, Wang W (2009) Interference avoidance mechanisms in the hybrid cellular and device-to-device systems. In: Proceedings of IEEE international symposium on personal indoor and mobile radio communications, pp 617–621

    Google Scholar 

  13. Al-Hourani A, Kandeepan S, Jammalipour A (2016) Stochastic geometry study on device-to-device communication as a disaster relief solution. IEEE Trans Veh Technol 65(5):3005–3017

    Article  Google Scholar 

  14. Yu H, Li Y, Xu X, Wang J (2014) Energy harvesting relay-assisted cellular networks based on stochastic geometry approach. In: 2014 international conference on intelligent green building and smart grid (IGBSG), Taipei, pp 1–6

    Google Scholar 

  15. Stoyan D, Kendall WS, Mecke J et al (1995) Stochastic geometry and its application, Chichester. Wiley Chichester, UK

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by High and New Technology Project of Hainan Province Key R. & D. Plan (ZDYF2018012) and the National Natural Science Foundation of China (No. 61661018). Hui Li is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Theorem 1

According to the definition of Eq. (3) and SINR, the coverage probability of the BS-UE1 link can be expressed as

$$p_{cU} = {\mathbb{E}}_{r} {\mathbb{P}}\left( {SINR_{cU} \ge \beta_{{{\text{c}}U}} |r} \right) = \int\limits_{r > 0} {{\mathbb{P}}\left( {h_{o} \ge \beta_{cU} r^{\alpha } (I_{cU} + \sigma^{2} } \right)} /P_{cU} |r)f_{r} (r)dr$$
(9)

where fr(r) is BS probability density function (PDF) [8]. By ho ~ exp(1), we can rewrite Eq. (3) as

$$\begin{aligned} {\mathbb{P}}(h_{o} \ge \beta_{cU} r^{\alpha } (I{}_{cU} + \sigma^{2} )/P_{cU} |r) & = {\mathbb{E}}\left[ {{\mathbb{P}}\left( {h_{o} \ge \beta_{cU} r^{\alpha } (I_{{{\text{c}}U}} + \sigma^{2} )/P_{cU} |r,I{}_{cU}} \right)} \right] \\ & = {\mathbb{E}}\left[ {\exp \left( {\beta_{cU} r^{\alpha } (I_{{{\text{c}}U}} + \sigma^{2} )/P_{cU} } \right)} \right] \\ & = \exp \left( {\beta_{cU} r^{\alpha } /P_{cU} } \right)L\left( {\beta_{cU} r^{\alpha } /P_{cU} } \right) \\ \end{aligned}$$
(10)

where \({\mathcal{L}}\) is Laplace transform of IcU. Defined by the Laplace transform and ho ~ exp(1), it can be written as

$$\begin{aligned} {\mathcal{L}}_{{I_{{cU}} }} (s) & = \rm{\mathbb{E}}(\exp (sI_{{cU}} ) = \rm{\mathbb{E}}\left[ {\exp \left( { - s\sum\limits_{{i \in \Phi _{C} /\{ x_{0} \} }} {P_{{{\text{cu}}}} } h_{i} r_{i}^{{ - \alpha }} } \right)} \right] \\ & = \rm{\mathbb{E}}_{{\Phi _{C} }} \left[ {\prod\limits_{{i \in \Phi _{C} /\{ x_{0} \} }} {\frac{1}{{1 + sP_{{{\text{c}}U}} r_{i}^{{ - \alpha }} }}} } \right] = \exp \left( { - 2\pi \lambda _{B} \int\limits_{r}^{\infty } {\left( {1 - \frac{1}{{1 + sP_{1} h_{i} r_{i}^{{ - \alpha }} }}} \right)udu} } \right) \\ \end{aligned}$$
(11)

The final step of the above derivation is obtained from the properties of the probability generation function of the PPP, which satisfies \({\mathbb{E}}\left[ {\prod\nolimits_{{x \in\Phi }} {g(x)} } \right] = \exp \left( { - \lambda \int_{{R^{2} }}^{\infty } {(1 - g(x)){\text{d}}x} } \right)\) [14]. S is changed by \(\beta_{cU} r^{\alpha } /P_{cU}\), and the interference IcU can be further derived as

$$\begin{aligned} {\mathcal{L}}_{{I_{{cU}} }} \left( {\beta _{1} r^{\alpha } /{\text{P}}_{{cU}} } \right) & = \exp \left( { - 2\pi \lambda _{B} \int\limits_{r}^{\infty } {\left( {1 - \frac{1}{{1 + \beta _{{cU}} r^{\alpha } u^{{ - \alpha }} }}} \right)u{\text{d}}u} } \right) \\ & = \exp \left( { - 2\pi \lambda _{B} \int\limits_{r}^{\infty } {\left( {\frac{{\beta _{{cU}} }}{{\beta _{{cU}} + (u/r)^{\alpha } }}} \right)u{\text{d}}u} } \right) \\ & = \exp ( - 2\pi \lambda _{B} \rho (\beta _{{cU}} ,\alpha )) \\ \end{aligned}$$
(12)

where \(\rho (\beta_{cU} ,\alpha ){ = }\beta_{cU}^{2/\alpha } \int_{{\beta_{cu}^{ - 2/\alpha } }}^{\infty } {\frac{1}{{1 + \theta^{\alpha /2} }}} \text{d} \theta ,\theta = \frac{u}{{r\beta_{cU}^{{1/a^{2} }} }}\). And Eq. (4) can be obtained by combining Eqs. (9)–(12).

B: Proof of Theorem 2

The proof of Theorem 2 is similar to Theorem 1, except that the subscripts are different. Where \(\lambda {\text{ = min(}}\lambda_{B} ,\lambda_{R} )\) value depended on pcR.

A: Proof of Theorem 3

By the definition of Eq. (7), PRU can be converted into

$$p_{RU} = {\mathbb{P}}\left( {\frac{{{\text{P}}_{RU} m_{o} r^{ - \alpha } }}{{I_{RU} + \sigma^{2} }} \ge \beta_{RU} } \right) = \int\limits_{0}^{R} {\mathbb{P}} (l_{o} \ge r^{\alpha } (I_{RU} + \sigma^{2} )/{\text{P}}_{RU} |r)f_{R} (r){\text{d}}r$$
(13)

In order to simplify the derivation, \(I_{r} = I_{RU} + P_{RU} m_{o} r^{ - \alpha }\) is assumed to be signal transmitted from the RS, so PRU can be further rewritten as

$$\begin{aligned} \int\limits_{0}^{R} {{\mathbb{P}}\left( {m_{o} \ge \frac{{\beta _{{RU}} r^{\alpha } (I_{{RU}} + \sigma ^{2} )}}{{(1 + \beta _{3} ){\text{P}}_{{RU}} }}|r} \right)f_{R} (r){\text{d}}r} & = \frac{2}{{R^{2} }}\int\limits_{0}^{R} {{\mathbb{E}}\left[ {\exp \left( { - \frac{{\beta _{{RU}} r^{\alpha } (I_{{RU}} + \sigma ^{2} )}}{{(1 + \beta _{{RU}} ){\text{P}}_{{RU}} }}} \right)} \right]} r{\text{d}}r \\ & = \frac{2}{{R^{2} }}\int\limits_{0}^{R} {\exp \left( { - \frac{{\beta _{{RU}} r^{\alpha } \sigma ^{2} }}{{(1 + \beta _{{RU}} ){\text{P}}_{{RU}} }}} \right)} L\left( {\frac{{\beta _{{RU}} r^{\alpha } }}{{(1 + \beta _{{RU}} ){\text{P}}_{{RU}} }}} \right)r{\text{d}}r \\ \end{aligned}$$
(14)

The above derivation uses \(f_{R} (r) = 2r/{\text{R}}^{2}\) and \(m_{o} \sim{ \exp }\)(1). \(L( \cdot )\) can be expressed as

$$L\left( {\beta_{RU} r^{\alpha } /P_{RU} } \right) = \exp ( - \pi r^{2} \lambda p_{cR} \rho (\beta_{RU} ,\alpha ))$$
(15)

where \(\rho (\beta_{RU} ,\alpha ){ = }\beta_{RU}^{2/\alpha } \int_{{\beta_{RU}^{ - 2/\alpha } }}^{\infty } {\frac{1}{{1 + \theta^{\alpha /2} }}} \text{d} \theta\), \(\lambda = \hbox{min} (\lambda_{B} ,\lambda_{R} )\). Combining Eqs. (13)–(15), we can get Eq. (8).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, XA., Li, H., Guo, Z., Wang, XP. (2020). Coverage Probability Analysis of D2D Communication Based on Stochastic Geometry Model. In: Liang, Q., Wang, W., Liu, X., Na, Z., Jia, M., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2019. Lecture Notes in Electrical Engineering, vol 571. Springer, Singapore. https://doi.org/10.1007/978-981-13-9409-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9409-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9408-9

  • Online ISBN: 978-981-13-9409-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics