Integrated Planning for Public Health Emergencies: A Modified Model for Controlling H1N1 Pandemic

  • Ming LiuEmail author
  • Jie Cao
  • Jing Liang
  • MingJun Chen


Infectious disease outbreaks have occurred many times in the past decades and are more likely to occur in the future. Recently, Büyüktahtakın et al. [1] proposed a new epidemics-logistics model to control the 2014 Ebola outbreak in West Africa. Considering that different diseases have dissimilar diffusion dynamics and can cause different public health emergencies, we modify the proposed model by changing capacity constraint, and then apply it to control the 2009 H1N1 outbreak in China. We formulate the problem to be a mixed-integer non-linear programming model (MINLP) and simultaneously determine when to open the new isolated wards and when to close the unused isolated wards. The test results reveal that our model could provide effective suggestions for controlling the H1N1 outbreak, including the appropriate capacity setting and the minimum budget required with different intervention start times.


  1. 1.
    Büyüktahtakın İE, Des-Bordes E, Kıbış EY. A new epidemics-logistics model: insights into controlling the Ebola virus disease in West Africa. Eur J Oper Res. 2018;265(3):1046–63.CrossRefGoogle Scholar
  2. 2.
    World Health Organization. Influenza A(H1N1) in China. (2010). Accessed 24 Sept 2017.
  3. 3.
    Roos, R. Cholera has struck more than 6% of Haitians. Center for Infectious Disease Research and Policy (CIDRAP). (2013). Accessed 10 Mar 2015.
  4. 4.
    CDC. 2014 Ebola outbreak in West Africa: case counts. (2015). Accessed 10 Mar 2015.
  5. 5.
    Department of Health. Smallpox mass vaccination: an operational planning framework. (2005). Accessed 11 June 2013.
  6. 6.
    Cohen ML. Changing patterns of infectious disease. Nature. 2000;406(6797):762–7.CrossRefGoogle Scholar
  7. 7.
    Sheu JB. Post-disaster relief–service centralized logistics distribution with survivor resilience maximization. Transp Res Part B Methodol. 2014;68(10):288–314.CrossRefGoogle Scholar
  8. 8.
    Mishra BK, Saini DK. SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl Math Comput. 2007;188(2):1476–82.Google Scholar
  9. 9.
    Sun C, Hsieh YH. Global analysis of an SEIR model with varying population size and vaccination. Appl Math Model. 2010;34(10):2685–97.CrossRefGoogle Scholar
  10. 10.
    Zhang J, Li J, Ma Z. Global dynamics of an SEIR epidemic model with immigration of different compartments. Acta Math Sci. 2006;26(3):551–67.CrossRefGoogle Scholar
  11. 11.
    Zhang J, Ma Z. Global dynamics of an SEIR epidemic model with saturating contact rate. Math Biosci. 2003;185(1):15–32.CrossRefGoogle Scholar
  12. 12.
    Tan X, Yuan L, Zhou J, et al. Modeling the initial transmission dynamics of influenza A H1N1 in Guangdong Province, China. Int J Infect Dis. 2013;17(7):479–84.CrossRefGoogle Scholar
  13. 13.
    Saito MM, Imoto S, Yamaguchi R, et al. Extension and verification of the SEIR model on the 2009 influenza A (H1N1) pandemic in Japan. Math Biosci. 2013;246(1):47–54.CrossRefGoogle Scholar
  14. 14.
    Samsuzzoha M, Singh M, Lucy D. Numerical study of an influenza epidemic model with diffusion. Appl Math Comput. 2010;217(7):3461–79.Google Scholar
  15. 15.
    Samsuzzoha M, Singh M, Lucy D. A numerical study on an influenza epidemic model with vaccination and diffusion. Appl Math Comput. 2012;219(1):122–41.Google Scholar
  16. 16.
    González-Parra G, Arenas AJ, Chen-Charpentier BM. A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1). Math Methods Appl Sci. 2015;37(15):2218–26.CrossRefGoogle Scholar
  17. 17.
    Calpaldi A, Behrend S, Berman B, et al. Parameter estimation and uncertainty quantification for an epidemic model. Math Biosci Eng. 2012;9(3):553–76.CrossRefGoogle Scholar
  18. 18.
    Kaplan EH, Craft DL, Wein LM. Emergency response to a smallpox attack: the case for mass vaccination. Proc Natl Acad Sci. 2002;99(16):10935–40.CrossRefGoogle Scholar
  19. 19.
    Kaplan EH, Craft DL, Wein LM. Analyzing bioterror response logistics: the case of smallpox. Math Biosci. 2003;185(1):33–72.CrossRefGoogle Scholar
  20. 20.
    Craft DL, Wein LM, Wilkins AH. Analyzing bioterror response logistics: the case of anthrax. Manage Sci. 2005;51(5):679–94.CrossRefGoogle Scholar
  21. 21.
    Zaric GS, Bravata DM, Cleophas Holty JE, et al. Modeling the logistics of response to anthrax bioterrorism. Med Decis Mak. 2008;28(3):332–50.CrossRefGoogle Scholar
  22. 22.
    Zaric GS, Brandeau ML. Resource allocation for epidemic control over short time horizons. Math Biosci. 2001;171(1):33–58.CrossRefGoogle Scholar
  23. 23.
    Zaric GS, Brandeau ML. Dynamic resource allocation for epidemic control in multiple populations. IMA J Math Appl Med Biol. 2002;19(4):235–55.CrossRefGoogle Scholar
  24. 24.
    Brandeau ML, Zaric GS, Richter A. Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. J Health Econ. 2003;22(4):575–98.Google Scholar
  25. 25.
    Legrand J, Grais RF, Boelle PY, et al. Understanding the dynamics of Ebola epidemics. Epidemiol Infect. 2007;135(4):610–21.CrossRefGoogle Scholar
  26. 26.
    Pandey A, Atkins KE, Medlock J, et al. Strategies for containing Ebola in West Africa. Science. 2014;346(6212):991–5.CrossRefGoogle Scholar
  27. 27.
    Ancel LW, Newman M, Martin M, et al. Applying network theory to epidemics: control measures for outbreaks of mycoplasma pneumonia. Emerg Infect Dis. 2001;9(2):204–10.Google Scholar
  28. 28.
    Eubank S, Guclu H, Kumar VS, et al. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429(6988):180–4.CrossRefGoogle Scholar
  29. 29.
    Lee EK, Pietz F, Benecke B, et al. Advancing public health and medical preparedness with operations research. Interfaces. 2013;43(1):79–98.CrossRefGoogle Scholar
  30. 30.
    Kasaie P, Kelton WD. Simulation optimization for allocation of epidemic-control resources. IIE Trans Healthc Syst Eng. 2013;3(2):78–93.CrossRefGoogle Scholar
  31. 31.
    Tanner MW, Sattenspiel L, Ntaimo L. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math Biosci. 2008;215(2):144–51.CrossRefGoogle Scholar
  32. 32.
    Yarmand H, Ivy JS, Denton B, et al. Optimal two-phase vaccine allocation to geographically different regions under uncertainty. Eur J Oper Res. 2014;233(1):208–19.CrossRefGoogle Scholar
  33. 33.
    Dasaklis TK, Pappis CP, Rachaniotis NP. Epidemics control and logistics operations: a review. Int J Prod Econ. 2012;139(2):393–410.CrossRefGoogle Scholar
  34. 34.
    Dimitrov NB, Meyers LA. Mathematical approaches to infectious disease prediction and control. Tutor Oper Res. 2010;7:1–25.Google Scholar
  35. 35.
    Rachaniotis NP, Dasaklis TK, Pappis CP. A deterministic resource scheduling model in epidemic control: a case study. Eur J Oper Res. 2012;216(1):225–31.CrossRefGoogle Scholar
  36. 36.
    Dasaklis TK, Rachaniotis N, Pappis C. Emergency supply chain management for controlling a smallpox outbreak: the case for regional mass vaccination. Int J Syst Sci Oper Logist. 2017;4(1):27–40.Google Scholar
  37. 37.
    Rachaniotis N, Dasaklis TK, Pappis C. Controlling infectious disease outbreaks: a deterministic allocation-scheduling model with multiple discrete resources. J Syst Sci Syst Eng. 2017;26(2):219–39.CrossRefGoogle Scholar
  38. 38.
    Ekici A, Keskinocak P, Swann JL. Modeling influenza pandemic and planning food distribution. Manuf Serv Oper Manage. 2014;16(1):11–27.CrossRefGoogle Scholar
  39. 39.
    Chen W, Guinet A, Ruiz A. Modeling the logistics response to a bioterrorist anthrax attack. Eur J Oper Res. 2016;254(2):458–71.CrossRefGoogle Scholar
  40. 40.
    Ren Y, Fernando, Wu S. Optimal resource allocation response to a smallpox outbreak. Comput Ind Eng. 2013;66(2):325–37.Google Scholar
  41. 41.
    He Y, Liu N. Methodology of emergency medical logistics for public health emergencies. Transp Res Part E Logist Transp Rev. 2015;79:178–200.CrossRefGoogle Scholar
  42. 42.
    Anparasan A, Lejeune M. Resource deployment and donation allocation for epidemic outbreaks. Ann Oper Res. 2017;6:1–24.Google Scholar
  43. 43.
    Liu M, Zhao LD. An integrated and dynamic optimisation model for the multi-level emergency logistics network in anti-bioterrorism system. Int J Syst Sci. 2012;43(8):1464–78.CrossRefGoogle Scholar
  44. 44.
    Liu M, Zhang Z, Zhang D. A dynamic allocation model for medical resources in the control of influenza diffusion. J Syst Sci Syst Eng. 2015;24(3):276–92.CrossRefGoogle Scholar
  45. 45.
    Liu M, Zhang D. A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating. J Oper Res Soc. 2016;67(6):841–52.CrossRefGoogle Scholar
  46. 46.
    National Bureau of Statistic. Sixth national population census of Jiangsu Province, China, 2012. Accessed 10 Oct 2017.
  47. 47.
    Tuite AR, Greer AL, Whelan M, et al. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Can Med Assoc J. 2010;182(2):131–6.CrossRefGoogle Scholar
  48. 48.
    Chowell G, Fenimore PW, Castillo-Garsow MA, et al. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003;224(1):1–8.CrossRefGoogle Scholar
  49. 49.
    Davoudi B, Hupert N, Edmunds WJ, et al. Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respir Viruses. 2010;3(5):215–22.Google Scholar
  50. 50.
    Hien TT, Boni MF, Bryant JE, et al. Early pandemic influenza (2009 H1N1) in Ho Chi Minh city, Vietnam: a clinical virological and epidemiological analysis. Plos Med. 2010;7(5):e1000277.CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Economics and ManagementNanjing University of Science and TechnologyNanjingChina
  2. 2.Xuzhou University of TechnologyXuzhouChina
  3. 3.Nanjing Polytechnic InstituteNanjingChina
  4. 4.Affiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations