Advertisement

Epidemic Logistics with Demand Information Updating Model II: Medical Resource Is Limited

  • Ming LiuEmail author
  • Jie Cao
  • Jing Liang
  • MingJun Chen
Chapter
  • 451 Downloads

Abstract

This chapter is a continuous work of Chap.  4. In this chapter, we develop a unique time-varying forecasting model for dynamic demand of medical resources based on a susceptible-exposed-infected-recovered (SEIR) influenza diffusion model. In this forecasting mechanism, medical resources allocated in the early period will take effect in subduing the spread of influenza and thus impact the demand in the later period. We adopt a discrete time-space network to describe the medical resources allocation process following a hypothetical influenza outbreak in a region.

References

  1. 1.
    Mishra BK, Saini DK. SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl Math Comput. 2007;188(2):1476–82.Google Scholar
  2. 2.
    Sun CJ, Hsieh YH. Global analysis of an SEIR model with varying population size and vaccination. Appl Math Model. 2010;34(10):2685–97.CrossRefGoogle Scholar
  3. 3.
    Li MY, Graef JR, Wang LC, Karsai J. Global dynamics of a SEIR model with varying total population size. Math Biosci. 1999;160(2):191–213.CrossRefGoogle Scholar
  4. 4.
    Zhang J, Li JQ, Ma ZE. Global dynamics of an SEIR epidemic model with immigration of different compartments. Acta Math Scientia. 2006;26(3):551–67.CrossRefGoogle Scholar
  5. 5.
    Zhang J, Ma ZE. Global dynamics of an SEIR epidemic model with saturating contact rate. Math Biosci. 2003;185(1):15–32.CrossRefGoogle Scholar
  6. 6.
    Wein LM, Liu YF, Leighton TJ. Evaluation of a HEPA/vaccine plan for indoor remediation after an airborne anthrax attack. Emerg Infect Dis. 2005;11(1):69–76.CrossRefGoogle Scholar
  7. 7.
    Craft DL, Wein LM, Alexander HW. Analyzing bioterror response logistics: the case of anthrax. Manag Sci. 2005;51(5):679–94.CrossRefGoogle Scholar
  8. 8.
    Germann TC, Kadau K, Longini IM, Macken CA. Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci. 2006;103(15):5935–40.CrossRefGoogle Scholar
  9. 9.
    Stroud P, Del Valle S, Sydoriak S, Riese J, Mniszewski S. Spatial dynamics of pandemic influenza in a massive artificial society. J Artif Soc Soc Simul. 2007;10(4):9.Google Scholar
  10. 10.
    Elizabeth Halloran M, Ferguson NM, Eubank S, et al. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci. 2008;105(12):4639–44.CrossRefGoogle Scholar
  11. 11.
    Aleman DM, Wibisono TG, Schwartz B. A nonhomogeneous agent-based simulation approach to modeling the spread of disease in a pandemic outbreak. Interfaces. 2011;41(3):301–15.CrossRefGoogle Scholar
  12. 12.
    Kim KI, Lin ZG, Zhang L. Avian-human influenza epidemic model with diffusion. Nonlinear Anal Real World Appl. 2010;11(1):313–22.CrossRefGoogle Scholar
  13. 13.
    Liu JL, Zhang TL. Epidemic spreading of an SEIRS model in scale-free networks. Commun Nonlinear Sci Numer Simul. 2011;16(8):3375–84.CrossRefGoogle Scholar
  14. 14.
    Samsuzzoha M, Singh M, Lucy D. Numerical study of an influenza epidemic model with diffusion. Appl Math Comput. 2010;217(7):3461–79.Google Scholar
  15. 15.
    Samsuzzoha M, Singh M, Lucy D. A numerical study on an influenza epidemic model with vaccination and diffusion. Appl Math Comput. 2012;219(1):122–41.Google Scholar
  16. 16.
    Adida E, Dey D, Mamani H. Operational issues and network effects in vaccine markets. Eur J Oper Res. 2013;231(2):414–27.CrossRefGoogle Scholar
  17. 17.
    Deo S, Corbett CJ. Cournot competition under yield uncertainty: the case of the U.S. influenza vaccine market. Manuf Serv Oper Manag. 2009;11(4):563–76.Google Scholar
  18. 18.
    Arifoğlu K, Deo S, Iravani S. Consumption externality and yield uncertainty in the influenza vaccine supply chain: interventions in demand and supply sides. Manag Sci. 2012;58(6):1072–91.CrossRefGoogle Scholar
  19. 19.
    Dai TL, Cho SH, Zhang FQ. Contracting for on-time delivery in the U.S. influenza vaccine supply chain. Manuf Serv Oper Manag. 2016;18(3):332–46.Google Scholar
  20. 20.
    Yamin D, Gavious A. Incentives’ effect in influenza vaccination policy. Manag Sci. 2013;59(12):2667–86.CrossRefGoogle Scholar
  21. 21.
    Stinnett A, Paltiel A. Mathematical programming for the efficient allocation of health care resources. J Health Econ. 1996;15(5):641–53.CrossRefGoogle Scholar
  22. 22.
    van Zon AH, Kommer GJ. Patient flows and optimal health-care resources allocation at the macro-level: a dynamic linear programming approach. Health Care Manag Sci. 1999;2(2):87–96.CrossRefGoogle Scholar
  23. 23.
    Zaric GS, Brandeau ML. Resources allocation for epidemic control over short time horizons. Math Biosci. 2001;171(1):33–58.CrossRefGoogle Scholar
  24. 24.
    Zaric GS, Brandeau ML. Dynamic resources allocation for epidemic control in multiple populations. J Math Appl Med Biol. 2002;19(4):235–55.CrossRefGoogle Scholar
  25. 25.
    Brandeau ML, Zaric GS, Richter A. Resources allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis. J Health Econ. 2003;22(4):575–98.CrossRefGoogle Scholar
  26. 26.
    Zaric GS, Bravata DM, Cleophas Holty JE, et al. Modeling the logistics of response to anthrax bioterrorism. Med Decis Making. 2008;28(3):332–50.CrossRefGoogle Scholar
  27. 27.
    Duintjer Tebbens RJ, Pallansch MA, Alexander JP, Thompson KM. Optimal vaccine stockpile design for an eradicated disease: application to polio. Vaccine. 2010;28(26):4312–27.CrossRefGoogle Scholar
  28. 28.
    Vlah JS, Rui FJ. Multi-objective scheduling and a resources allocation problem in hospitals. J Sched. 2012;15(5):513–35.CrossRefGoogle Scholar
  29. 29.
    Savachkin A, Uribe A. Dynamic redistribution of mitigation resources during influenza pandemics. Socio-Econ Plann Sci. 2012;46(1):33–45.CrossRefGoogle Scholar
  30. 30.
    Rottkemper B, Fischer K, Blecken A. A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations. Socio-Econ Plann Sci. 2012;46(1):98–109.CrossRefGoogle Scholar
  31. 31.
    Rachaniotis NP, Dasaklis TK, Pappis CP. A deterministic resources scheduling model in epidemic control: A case study. Eur J Oper Res. 2012;216(1):225–31.CrossRefGoogle Scholar
  32. 32.
    Sun L, DePuy GW, Evans GW. Multi-objective optimization models for patient allocation during a pandemic influenza outbreak. Comput Oper Res. 2014;51:350–9.CrossRefGoogle Scholar
  33. 33.
    Brandeau M. Allocating resources to control infectious diseases. Oper Res Health Care. 2005;70(3):443–64.CrossRefGoogle Scholar
  34. 34.
    Dasaklis TK, Pappis CP, Rachaniotis NP. Epidemics control and logistics operations: a review. Int J Prod Econ. 2012;139(2):393–410.CrossRefGoogle Scholar
  35. 35.
    Liu M, Zhao LD. An integrated and dynamic optimisation model for the multi-level emergency logistics network in anti-bioterrorism system. Int J Syst Sci. 2012;43(8):1464–78.CrossRefGoogle Scholar
  36. 36.
    Brauer F, Castillo-Chávez C. Mathematical models in population biology and epidemiology. NY: Springer; 2012.CrossRefGoogle Scholar
  37. 37.
    Kermack WO, McKendrick AG. A Contribution to the mathematical theory of epidemics. Proc R Soc A Contain Pap Math Phys Character. 1927;115(772):700–21.CrossRefGoogle Scholar
  38. 38.
    Liu Q, Chen QM. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A. 2015;428:140–53.CrossRefGoogle Scholar
  39. 39.
    Harko T, Lobo F, Mak MK. Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl Math Comput. 2014;236:184–94.Google Scholar
  40. 40.
    Yan SY, Shih YL. Optimal scheduling of emergency roadway repair and subsequent relief distribution. Comput Oper Res. 2009;36(6):2049–65.CrossRefGoogle Scholar
  41. 41.
    Yan SY, Lin JR, Lai CW. The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands. Transp Res Part E Logist Transp Rev. 2013;53:34–48.CrossRefGoogle Scholar
  42. 42.
    Yan SY, Lin CK, Chen SY. Logistical support scheduling under stochastic travel times given an emergency repair work schedule. Comput Ind Eng. 2014;67:20–35.CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Economics and ManagementNanjing University of Science and TechnologyNanjingChina
  2. 2.Xuzhou University of TechnologyXuzhouChina
  3. 3.Nanjing Polytechnic InstituteNanjingChina
  4. 4.Affiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations