Skip to main content

Marine Fungal Ecology in the Molecular Era

  • Chapter
  • First Online:
Advancing Frontiers in Mycology & Mycotechnology

Abstract

The marine environment is an intriguing one and provides a range of wonderful ecological niches to explore the ecology and biodiversity of marine microorganisms. Fungi are possibly by far the most abundant “lifeforms” in the marine environments but largely unexplored. Most studies on marine fungi were from coastal habitats, and they are mainly surveys employing traditional techniques such as microscopy and/or culture-dependent methods which suggest poor diversity of marine fungi (less than 1%) predominated by Dikarya. In fact, open oceans were largely considered as “fungal desert” given their inaccessibility and lack of appropriate methods to recover these organisms from these harsh environments. With recent technological advances and developments in molecular techniques involving advanced DNA sequencing technologies, marine mycologists have started to unravel unseen microbial species and better understand the structural and functional diversity of environmental fungal communities. These molecular genomic tools provided insights into genetic diversity especially pertaining to recovery of uncultured fungal organisms, discovery of novel fungal lineages, as well as the metabolic diversity of these complex fungal communities. Particularly, the culture-independent techniques involving environmental cloning, next-generation sequencing are revealing a higher fungal diversity from environmental DNA samples collected from surface waters in open seas, sediments in coastal, benthic and deep sea environments, hydrothermal vents and oxygen-deficient environments. In addition to the diversity, whole genome sequencing, RNA-Seq and microarray technologies in transcriptome profiling have provided a better understanding of potentially active fungal communities. With the use of these culture-independent methods, several undescribed fungal taxa termed as “dark matter fungi” belonging mainly to zoosporic fungi such as Blastocladiomycota, Chytridiomycota, Cryptomycota, and Neocallimastigomycota and Zygomycota including Entomophthoromycota, Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina lineages have been retrieved from marine habitats. Many of these nameless and faceless taxa of the early diverging clusters are microscopic in nature with special nutritional requirements and are difficult to isolate in vitro. Cryptomycota, the recently described phylum, established using phylotypes based exclusively on environmental sampling, has been shown to be highly diverse, abundant and ubiquitous in distribution. The marine fungal ecology has changed paradigms in the molecular era. The diversity and ecology of marine fungi recovered from the use of molecular tools are discussed in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab MA, Pang K-L, Nagahama T, Abdel-Aziz FA, Jones EBG (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycolog Prog 9:537–558

    Article  Google Scholar 

  • Aleem AA (1980) Distribution and ecology of marine fungi in Sierra Leone (Tropical WestAfrica). Bot Mar 23:679–688

    Google Scholar 

  • Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Alias SA, Jones EBG (2000) Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand. Malaysia Fungal Divers 5:9–21

    Google Scholar 

  • Alias SA, Kuthubutheen AJ, Jones EBG (1995) Frequencyofoccurrenceoffungi onwood in Malaysian mangroves. Hydrobiologia 295:97–106

    Article  Google Scholar 

  • Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460:105–111

    Article  Google Scholar 

  • Amend AS, Barshis DJ, Oliver TA (2012) Coral associated marine fungi form novel lineages and heterogeneous assemblates. ISME J 6:291–301

    Article  CAS  Google Scholar 

  • Arfi Y, Marchand C, Wartel M, Record E (2012) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–285

    Article  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, WatkinsonSCC WS, Richards TAA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  Google Scholar 

  • Beakes GW, Honda D, Thines M (2014) Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In: McLaughlin DJ, Spatafora JW (eds) The Mycota VII. Part A. Systematics and evolution, 2nd edn. Springer, Berlin/Heidelberg, pp 39–96

    Chapter  Google Scholar 

  • Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198

    Article  Google Scholar 

  • Bonthond G, Merselis DG, Dougan KE, Graff T, Todd W, Fourqurean JW, Rodriguez-Lanetty M (2018) Inter-domain microbial diversity within the coral holobiont Siderastrea siderea from two depth habitats. Peer J 6:e4323. https://doi.org/10.7717/peerj.4323

    Article  PubMed  Google Scholar 

  • Booth T & Kenkel N (1986) Ecological studies of lignicolous marine fungi: a distribution model based on coordination and classification. In The Biology of Marine Fungi (ed.S.T. Moss), Cambridge University Press, Cambridge, pp. 297-310

    Google Scholar 

  • Borse BD (1988) Frequency of occurrence of marine fungi from Maharashtra coast, India. Ind J Mar Sci 17:165–167

    Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Cai L, Jeewon R, Hyde KD (2006) Molecular systematics of Zopfiella and allied genera: evidence from multigene sequence analyses. Fungal Biology 110:359–368

    CAS  Google Scholar 

  • Cawthorn RJ (2011) Diseases of American lobsters (Homarus americanus): a review. J Invertebr Pathol 106:71–78

    Article  PubMed  Google Scholar 

  • Cury JC, Araujo FV, Coelho-Souza SA, Peixoto RS, OliveiraJAL SHF, Davila AMR, Rosado AS (2011) Microbial diversity of a Brazilian coastal region influencedby an upwelling system and anthropogenic activity. PLoS One 6:e16553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damare SR, Nagarajan M, Raghukumar C (2008) Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep-Sea Res 55:670–678

    Article  Google Scholar 

  • Danovaro R, Pusceddu A (2007) Biodiversity and ecosystem functioning in coastal lagoons: does microbial diversity play any role? Estuar Coast Shelf Sci 75:4–12

    Article  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  CAS  Google Scholar 

  • Devadatha B, Sarma VV, Wasnasinghe DN, Hyde KD & Jones EBG (2017) Introducing the new Indian mangrove species, Vaginatispora microarmatispora (Lophiostomataceae) based on morphology and multigene phylogenetic analysis. Phytotaxa. 329: 139-149. https://doi.org/10.11646/phytotaxa.329.2.4

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a) Deniquelata vittalii sp. nov., a novel Indian saprobic marine fungus on Suaeda monoica and two new records of marine fungi from Muthupet mangroves, East coast of India. Mycosphere 9:565–582. https://doi.org/10.5943/mycosphere/9/3/8

    Article  Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R, Jones EBG (2018b) Morosphaeria muthupetensis sp.nov. (Morosphaeriaceae) from India: Morphological characterisation and multigene phylogenetic inference. Bot Mar 61(4):395–405. https://doi.org/10.1515/bot-2017-0124

    Article  CAS  Google Scholar 

  • Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN, Hyde KD, EBG J (2018c) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycolog Progr 17:791–804. https://doi.org/10.1007/s11557-018-1387-4

    Article  Google Scholar 

  • Duong LM, Lumyong S, Hyde KD, Jeewon R (2004) Emarcea castanopsicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences. Stud Mycol 50:253–260

    Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  PubMed  Google Scholar 

  • Fell JW, Master IM (1980) The association and potential role of fungi in mangrove detrital systems. Bot Mar 23:257–263

    Google Scholar 

  • Fryar SC (2002) Fungal succession or sequence of fruit bodies? In: Hyde KD, Jones EBG (eds) Fungal succession. Fungal Divers 10:5–10

    Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li BL, Zheng CC, Wang G (2008) Moleculardetection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Johnson ZI, Wang G (2010) Molecular characterizationof the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  • Gojkovic Z, Knecht W, Zameitat E, Warneboldt J, Coutelis JB, Pynyaha Y, Neuveglise C, Moller K, Loffler M, Piskur J (2004) Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol Genet Genom 271:387–393

    Article  CAS  Google Scholar 

  • Hatai K (2012) Diseases of fish and shell fish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 15–52

    Chapter  Google Scholar 

  • Hongsanan S, Maharachchikumbura S, Hyde KD, Samarakoon M, Jeewon R, Zhao Q, Bahkali A (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:84. https://doi.org/10.1007/s13225-017-0384-2

    Article  Google Scholar 

  • Hongsanan S, Jeewon R, Purahong W, Xie N, Liu J-K, Jayawardane RS, Ekanayake RS, Dissanayake A, Raspe O, Hyde KD, Stadler M, Persoh D (2018) Can we use environmental DNA as holotypes? Fungal Divers 92:1–30

    Article  Google Scholar 

  • Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroeffentlichender Institute ftir Meeres forschung, Bremerhaven Supplement 5:419–441

    Google Scholar 

  • Hyde KD (1988a) Studies on the tropical marine fungi of Brunei. Bot J Linn Soc 98:135–151

    Article  Google Scholar 

  • Hyde KD (1988b) Observations on the vertical distribution of marine fungi on Rhizophora spp. at Kampong Danau mangrove, Brunei. Asian Mar Biol 5:77–81

    Google Scholar 

  • Hyde KD (1989a) Ecology of tropical marine fungi. Hydrobiologia 178:199–208

    Article  Google Scholar 

  • Hyde KD (1989b) Intertidal mangrove fungi from North Sumatra. Can J Bot 67:3078–3082

    Article  Google Scholar 

  • Hyde KD (1989c) Vertical zonation of intertidal mangrove fungi. In: Hattori T, lshida Y, Maruyama Y, Moria R, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 302–306

    Google Scholar 

  • Hyde KD (1990a) A comparison of the intertidal mycota of five mangrove tree species. Asian Mar Biol 7:93–107

    Google Scholar 

  • Hyde KD (1990b) A study of the vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquat Bot 36:255–262

    Article  Google Scholar 

  • Hyde KD (1991) Fungal colonization of Rhizophora apiculata and Xylocarpus granatumpoles in Kampong Kapok mangrove Brunei. Sydowia 43:31–38

    Google Scholar 

  • Hyde KD (1992) Intertidal mangrove fungi from the West Coast of Mexico including onenew genus and two new species. Mycol Res 96:25–30

    Article  Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing Nypafruticans. Biodivers Conserv 9:393–402

    Article  Google Scholar 

  • Hyde KD, Jones EBG(1988) Marine mangrove fungi. Marine Ecol (P.S.Z.N.I.) 9:15–33

    Article  Google Scholar 

  • Hyde KD, Jones EBG (1989) Ecological observations on marine fungi from the Seychelles. Bot J Linn Soc 100:237–254

    Article  Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling. What gaps occur in our knowledge? Hydrobiologia 295:107–118

    Article  Google Scholar 

  • Hyde KD, Sarma VV (2006) Biodiversity and ecological observations on filamentous fungi of Nypa fruticans along the Tutong River, Brunei. Ind J Mar Sci 35(4):297–307

    Google Scholar 

  • Hyde KD, Chalermongse A, Boonthavikoon T (1990) Ecology of intertidal fungi at Ranong mangrove, Thailand. Trans Mycol Soc Japn 31:17–28

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of marine fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology a practical approach. Fungal Diversity Press, Hong Kong, pp 172–204

    Google Scholar 

  • Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T(2009) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  CAS  PubMed  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  CAS  PubMed  Google Scholar 

  • Jeewon R, Hyde KD (2007). Detection and diversity of fungi from environmental samples: traditional versus molecular approaches. In: Varma A, Oelmüller R (eds) Advanced techniques in soil microbiology. Soil biology, vol 11. Springer, Berlin/Heidelberg, pp 427. https://doi.org/10.1007/978-3-540-70865-0_1

  • Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7(11):1669–1677

    Article  Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392

    Article  CAS  PubMed  Google Scholar 

  • Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003a) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    Article  CAS  PubMed  Google Scholar 

  • Jeewon R, Cai L, Zhang K, Hyde KD (2003b) Dyrithiopsis lakefuxianensis gen et sp. nov. from Fuxian Lake, Yunnan, China and notes on the taxonomic confusion surrounding Dyrithium. Mycologia 95:911–920

    Article  CAS  PubMed  Google Scholar 

  • Jeewon R, Yeung QSY, Hyde KD (2009) Novel phylogenetic group within Thozetella (Chaetosphaeriaceae): a new taxon based on morphology and DNA sequence analyses. Can J Microbiol 55:680–687

    CAS  PubMed  Google Scholar 

  • Jeewon R, Ittoo J, Mahadeb D, Jaufeerally-Fakim Y, Kai WH, Liu A-R (2013) DNA based identification and phylogenetic characterisation of endophytic and saprobic fungi from Antidesma madagascariense, a medicinal plant in Mauritius. J Mycol 2013:1. https://doi.org/10.1155/2013/781914

    Article  Google Scholar 

  • Jeewon R, Wanasinghe DN, Rampadaruth S, Puchooa D, Zhou L-G, Liu A-R, Wang H-K (2017) Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: A taxonomic dead end? Mycosphere 8(10):1802–1817

    Article  Google Scholar 

  • Jeewon R et al (2018) Hidden mycota of pine needles: Molecular signatures from PCR-DGGE and Ribosomal DNA phylogenetic characterization of novel phylotypes. Sci Rep 8:18053. https://doi.org/10.1038/s41598-018-36573-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EBG, Alias SA (1997) Biodiversity of mangrove fungi. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 71–92

    Google Scholar 

  • Jones EBG, Hyde KD (2002) Succession: where do we go from here? In Hyde KD, Jones EBG (eds) Fungal succession. Fungal Divers 10:241–253

    Google Scholar 

  • Jones EBG, Tan TK (1987) Observations on manglicoIous fungi from Malaysia. Tran Br Mycol Soc 89:390–392

    Article  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diver 73:1–72

    Article  Google Scholar 

  • Karunarathna A, Papizadeh M, Senanayake IC, Jeewon R, Phookamsak R, Goonasekara ID, Wanasinghe DN, Wijayawardene NN, Amoozegar MA, Shahzadeh Fazeli SA, Camporesi E, Hyde KD, Weerahewa HLD, Lumyong S, McKenzie EHC (2017) Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 8(10):1818–1834

    Article  Google Scholar 

  • Kim K, Alker AP, Shuster K, Quirolo C, Harvell CD (2006) Longitudinal study ofaspergillosis in sea fan corals. DisAquat Organ 69:95–99

    Article  Google Scholar 

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organisation and role in the ecosystem. Boca Raton, Taylor & Francis, pp 61–92

    Chapter  Google Scholar 

  • Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD, Jeewon R (2007) Molecular phylogeny of Aquaticheirospora broccolii; a new synnematous hyphomycete taxon from Thailand and its teleomorphic affinities to Massarinaceae. Bot J LinnSoc 155:283–296

    Google Scholar 

  • Kohlmeyer J (1983) Geography of marine fungi. Austr J BotSuppl Ser 10:67–76

    Google Scholar 

  • Kohlmeyer J (1987) Marine fungi from Aldabra, the Galapagos and other tropical islands. Can J Bot 65:571–582

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: The higher fungi. Academic, London/New York/San Francisco, p 690

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1992) Two Ascomycotina from coral reefs in the Caribbeanand Australia. Cryptogam Bot 2:367–374

    Google Scholar 

  • Kohlmeyer J, Bebout B, Volkmann-Kohlmeyer B (1995) Decomposition of mangrove wood by marine fungi and teredinids in Belize. Mar Ecol (P.S.Z.N.I.) 16:27–39

    Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-seahydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease?Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Progr Ser 117:137–147. https://doi.org/10.3354/meps117137

    Article  Google Scholar 

  • Leong WF, Tan TX, EBG J (1991) Fungal colonization of submerged Bruguiera cylindrica and Rhizophora apiculata wood. Bot Mar 34:69–76

    Article  Google Scholar 

  • Li JF, Jeewon R, Phookamsak R, Bhat DJ, Mapook A, Chukeatirote E, Hyde KD, Lumyong S, McKenzie EHC (2018) Marinophialophora garethjonesii gen. et sp. nov.: a new hyphomycete associated with Halocyphina from marine habitats in Thailand. Phytotaxa 345(1):1–12

    Article  Google Scholar 

  • Liu AR, Chen SC, Wu SY, Xu T, Guo LD, Jeewon R, Wei JG (2010) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Mol Phylogenet Evol 57:528–535

    Article  CAS  PubMed  Google Scholar 

  • López-Garcia P, Vereshchaka A, Mozeira D (2007) Eukaryotic diversity associated with carbonatesand fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  CAS  Google Scholar 

  • Luo ZL, Bhat DJ, Jeewon R, Boonmee S, Bao D-F, Zhao Y-C, Chai H-M, Su H-Y, Su X-J, Hyde KD (2017) Molecular phylogeny and morphological characterization of asexual fungi (Tubeufiaceae) from freshwater habitats in Yunnan, China. Cryptogamie Mycol 38:1–28

    CAS  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano EM, Gachon CMM,Strittmatter M, Gleason FH (2012) Hyphochytriomycota, Oomycota and Perkinsozoa (SupergroupChromalveolata). In Jones EBG, Pang K-L (eds) Marine fungi andfungal-like organisms. De Gruyter, Berlin/Boston, pp 167–213

    Google Scholar 

  • Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218

    Article  PubMed  Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2003) Rhodotorula benthica sp nov and Rhodotorula calyptogenae sp nov, novel yeast species from animals collected from the deepsea floor, and Rhodotorula lysiniphila sp nov, which is related phylogenetically. Int J Syst Evol Microbiol 53:897–903

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidencethat deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Nagano Y, Miura T, Nishia S, Lima AO, Nakayama C, Pellizari VH, Fujikura K (2018) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep-Sea Res Pt II 146:59–67

    Article  Google Scholar 

  • Newell SY (1976) Mangrove fungi: the succession in the mycoflora of red mangrove (Rhizophora mangle L.) seedlings. In: Jones EBG (ed) Recent advances in aquatic mycology. Wiley, New York, pp 51–91

    Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Progr 3:41–49. https://doi.org/10.1007/s11557-006-0075-y

    Article  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of sub-seafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8(2):e56335. https://doi.org/10.1371/journal.pone.0056335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang K-L, Jones EBG (2017) Recent advances in marine mycology. Bot Mar 60:361–362

    Article  Google Scholar 

  • Pang KL, Overy DP, Jones EBG, Calado MDL, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175

    Article  Google Scholar 

  • Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–13

    Article  Google Scholar 

  • Pinnoi A, Jeewon R, Sakayaroj J, Hyde KD, Jones EBG (2007) Berkleasmium crunisia sp. nov. and its teleomorphic affinities to the Pleosporales based on 18S, 28S and ITS-5.8S rDNA sequence analyses. Mycologia 99:378–384

    Article  CAS  PubMed  Google Scholar 

  • Polishook JD, Bills GF, Lodge DJ (1996) Microfungi from decaying leaves of two rain forest trees in Puerto Rico. J Ind Microbiol Biotechnol 17:284–294

    Article  CAS  Google Scholar 

  • Poonyth AD, Hyde KD, Peerally A (1999) Intertidal fungi in Mauritian mangroves. Bot Mar 42:243–252

    Article  Google Scholar 

  • Porter D (1986) Mycoses of marine organisms: an overview of pathogenic fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 141–153

    Google Scholar 

  • Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non-sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186

    Google Scholar 

  • Promputtha I, Lumyong S, Vijaykrishna D, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecol 53:579–590

    Article  Google Scholar 

  • Raghukumar C, Ravindran J (2012) Fungi and their role in corals and coral reef ecosystems. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 89–114

    Chapter  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of themangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungalcomponent of marine detritus. III. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nath BN, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench. Indian Ocean. Deep-Sea Res Pt I 51:1759–1768

    Article  CAS  Google Scholar 

  • Rama T, Norden J, Davey ML, Mathiassen GH (2014) Fungiahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58

    Article  Google Scholar 

  • Ramaiah N (2006) A review on fungal diseases of algae, marine fishes, shrimps and corals. Ind J Mar Sci 35:380–387

    Google Scholar 

  • Rampadaruth S,Bandhoa K, Puchooa D, Jeewon R, Bal S (2018) Metatranscriptomics analysis of mangroves habitats around Mauritius. World J Microbiol Biotechnol 34:59. https://doi.org/10.1007/s11274-018-2442-7

  • Ravindran J, Raghukumar C, Raghukumar S (2001) Fungi in Porites lutea: association withhealthy and diseased corals. Dis Aquat Org 47:219–228

    Article  CAS  PubMed  Google Scholar 

  • Rédou V, Ciobanu MC, Pachiadaki MG, Edgcomb V, Alain K, Barbier G, Burgaud G (2014) In-depth analyses of deep subsurface sediments using 454 pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol 90:908–921

    Article  CAS  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladiere L, Barbier G, Bergaud G (2015) Species richness and adaptation of marine fungi from deep-sub seafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reich M, Labes A (2017) How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar Genomics 36:57–75

    Article  PubMed  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc Lond [Biol] 282:20152243. https://doi.org/10.1098/rspb.2015.2243

    Article  CAS  Google Scholar 

  • Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Vittal BPR (1998–1999) Ecological studies on mangrove fungi from east coast of India. Observations on seasonal occurrence. Kavaka 26&27:105–120

    Google Scholar 

  • Sarma VV, Vittal BPR (2000) Biodiversity of mangrove fungi on different substrata of Rhizophora apiculata and Avicennia spp. from Godavari and Krishna deltas, east coast of India. In Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium. Fungal Divers 5:23–41

    Google Scholar 

  • Sarma VV, Vittal BPR (2001) Biodiversity of fungi on selected mangrove plants in the Godavari and Krishna deltas, east coast of India. Fungal Divers 6:113–129

    Google Scholar 

  • Sarma VV, Vittal BPR (2002) A preliminary study on vertical distribution of manglicolous fungi on prop roots of Rhizophora apiculata Blume at Krishna delta, east coast of India. Kavaka 30:21–29

    Google Scholar 

  • Sarma VV, Hyde KD, Vittal BPR (2001) Frequency of occurrence of mangrove fungi from the East coast of India. Hydrobiologia 455:41–53

    Article  Google Scholar 

  • Schmidt JP, Shearer CA (2003) A checklist of mangrove–associated fungi, their geography and known host plants. Mycotaxon 80:423–477

    Google Scholar 

  • Schmidt JP, Shearer CA (2004) Geographical and host distribution of lignicolous mangrove microfungi. Bot Mar 47:496–500

    Google Scholar 

  • Senanayake IC, Crous PW, Groenewald JZ, SSN M, Jeewon R, AJL P, Bhat JD, Perera RH, Li QR, Li WJ, Tangthirasunun N, Norphanphoun C, Karunarathna SC, Camporesi E, Manawasighe I, Al-Sadi AM, Hyde KD (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Stud Mycol 86:217–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe D, Norphanphoun C, Karunarathna A, Pem D, Perera RH, Camporesi E, McKenzie EHC, Hyde KD, Karunarathna SD (2018a) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers 93:241. https://doi.org/10.1007/s13225-018-0410-z

    Article  Google Scholar 

  • Senanayake IC, Jeewon R, Camporesi E, Hyde KD, Zeng Y-J, Tian S-L, Xie N (2018b) Sulcispora supratumida sp. nov. (Phaeosphaeriaceae, Pleosporales) on Anthoxanthum odoratum from Italy. Myco Keys 38:35–46

    Article  Google Scholar 

  • Shields JD, Overstreet RM (2007) Diseases, parasites, and other symbionts. Chapter 8. In Kennedy, VS, Cronin LE (eds) The blue crab, Callinectes sapidus. Maryland Sea Grant, College Park, pp 299–417

    Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Barlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturablefungi from the deep-sea sediments of the Central Indian Basin and theirgrowth characteristics. Fungal Divers 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis inthe deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Meena RM, Verma P, Shouche Y (2012) Fungal diversityin deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol 5:543–553

    Article  Google Scholar 

  • Sridhar KR, Maria GL (2006) Fungal diversity on mangrove woody litter Rhizophora mucronata (Rhizophoraceae). Ind J Mar Sci 35:318–325

    Google Scholar 

  • Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar CS, Houbraken J, Boekhout T, de Beer D, Stoeck T (2014) Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol 14:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approachto access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  CAS  PubMed  Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Briner H-W, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(1):21–31. https://doi.org/10.1111/j.1365-294X.2009.04480

    Article  CAS  PubMed  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swe A, Jeewon R, Hyde KD (2008a) Nematode-trapping fungi from mangrove habitats. Cryptogam Mycol 29:333–354

    Google Scholar 

  • Swe A, Jeewon R, Pointing SB, Hyde KD (2008b) Taxonomy and phylogeny of Arthrobotrys mangrovispora, a new marine nematode-trapping fungal species. Bot Mar 51:331–338

    Google Scholar 

  • Swe A, Jeewon R, Pointing SB, Hyde KD (2009) Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodivers Conserv 18:1695–1714

    Article  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetousfungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knollmethane seep. Extremophiles 10:165–169

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576

    Article  CAS  PubMed  Google Scholar 

  • Tsui CKM, Berbee M, Jeewon R, Hyde KD (2006) Molecular phylogeny of Dictyosporium and allied genera inferred from ribosomal DNA. Fungal Divers 21:157–166

    Google Scholar 

  • Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coralholobionts. Environ Microbiol 8:2148–2163

    Article  CAS  Google Scholar 

  • Vijaykrishna D, Mostert L, JeewonR HKD, Crous PW (2004) Pleurostomosphora, an anamorph of Pleurostoma (Calosphaeriales), a new anamorph genus morphologically similar to Phialophora. Stud Mycol 50:387–398

    Google Scholar 

  • Vinit K, Cheewangkoon R, Thambugala KM, Jones EBG, Jeewon R, Doilom M, Brahmanage RS, Hyde KD (2018a) Rhytidhysteron mangrovei, (Hysteriaceae) a new species from mangroves in Phetchaburi Province, Thailand. Phytotaxa. (in press)

    Google Scholar 

  • Vinit K, Doilom M, Wanasinghe DN, Bhat DJ, Brahmanage RS, Jeewon R, Xiao Y, Hyde KD (2018b) Phylogenetic placement of Akanthomyces muscarius, a new endophyte record from Nypa fruticans in Thailand. Curr Res Environ Appl Mycol J 8(3):404–417

    Article  Google Scholar 

  • Volkmann-Kohlmeyer B, Kohlmeyer J (1993) Biogeographic observations on Pacificmarine fungi. Mycologia 85:337–346

    Article  Google Scholar 

  • Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EBG, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarakoon MC, Goonasekara ID, Mapook A, Li WJ, Senanayake IC, Li JF, Norphanphoun C, Doilom M, Bahkali AH, Xu JC, Mortimer PE, Tibell L, Savic ST, Karunarathna SC (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers 89:1–236

    Article  Google Scholar 

  • Webster J, Weber WS (2007) Introduction to fungi. Cambridge University Press, Cambridge, p 841

    Book  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Jiao N, Ren R and Warren A (2017). Distribution and diversity of microbial eukaryotes in bathypelagic waters of the South China Sea. J. Eukaryot. Microbiol. 64: 370–382. https://doi.org/10.1111/jeu.12372

    Article  PubMed  CAS  Google Scholar 

  • Yarden O (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228. https://doi.org/10.3389/fmicb.2014.00228

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarden O, Ainsworth TD, Roff G, Leggat W, Fine M, Hoegh-Guldberg O (2007) Increased prevalence ofubiquitous ascomycetes in an acropoid coral (Acropora formosa) exhibiting symptoms of brown band syndromeand skeletal eroding band disease. Appl Environ Microbiol 73:2755–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jeewon R, Fournier J, Hyde KD (2008) Multi-gene phylogeny and morphotaxonomy of Amniculicola lignicola: novel freshwater fungus from France and its relationships to the Pleosporales. Fungal Biol 112:1186–1194

    CAS  Google Scholar 

  • Zhang XY, Tang GL, Xu XY, Nong XH, Qi SH (2014) Insights into deep-seasediment fungal communities from the East Indian Ocean using targetedenvironmental sequencing combined with traditional cultivation. PLoS One 9(10):e109118. https://doi.org/10.1371/journal.pone.0109118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao RL, JeewonR GE, Desjardin D, Soytong K, Hyde KD (2007) Ribosomal DNA phylogenies of Cyathus: Is current morphotaxonomic classification robust? Mycologia 99:385–395

    Article  CAS  PubMed  Google Scholar 

  • Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y (2011) Decolorization of different dyes by a newlyisolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. J Hazard Mater 192:855–873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VVS would like to dedicate this chapter to Late Prof. B.P.R. Vittal, C.A.S. in Botany, University of Madras, Guindy Campus, Chennai, India, for introducing him to marine mycology and for being a great mentor and to Dr. Seshagiri Raghukumar and Dr. Chandralatha Raghukumar, formerly with National Institute of Oceanography, Goa, India, for their encouragement and inspiration.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, V.V., Jeewon, R. (2019). Marine Fungal Ecology in the Molecular Era. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_6

Download citation

Publish with us

Policies and ethics