Skip to main content

Fungal Enzymes: Sources and Biotechnological Applications

  • Chapter
  • First Online:
Book cover Advancing Frontiers in Mycology & Mycotechnology

Abstract

Fungi, being obligate heterotrophs, are natural decomposers and elaborate a number of enzymes. Currently, more than half of the industrial enzymes are of fungal origin and are being used successfully in diverse industrial processes and products. Some of the well-known areas are pulp and paper, textiles, detergents, food, feeds, nutraceuticals, and therapeutics. Production of industrial enzymes utilizes different fungal genera, Aspergillus being the most exploited one. Apart from protease, phytase, L-asparaginase, and few others, most commercial fungal enzymes are glycosyl hydrolases (cellulases, xylanase, mannanase, amylase, pectinase, β-fructofuranosidase, and others).

Cellulase and amylase (including glucoamylase) from Trichoderma sp. and Aspergillus spp., respectively, are exploited for bio-ethanol, textiles, and detergent industries. Fungal proteases, including keratinases, find application in detergent, food, leather, pharmaceutical, and waste management sectors. The role of fungal acidic pectinases in bringing down the cloudiness and bitterness of fruit juices is well recognized, while fungal phytases are being explored in enriching the nutritive value of poultry diets. L-Asparaginases sourced from molds are being examined for cancer therapy and mitigation of acrylamide formation in food. With the advent of biotechnological interventions, heterologous overexpression in suitable hosts, immobilization on novel matrices, and tailoring of fungal enzymes are being pursued. In this chapter, some of the important fungal enzymes are explored from recent perspective of their biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulaal WH (2018) Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochem 19:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77:4859–4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal S, Kango N (2019) Development and catalytic characterization of L-asparaginase nano-bioconjugates. Int J Biol Macromol 145:1145–1150

    Google Scholar 

  • Agrawal S, Sharma I, Prajapati BP, Suryawanshi RK, Kango N (2018) Catalytic characteristics and application of L-asparaginase immobilized on aluminum oxide pellets. Int J Biol Macromol 114:504–511

    Article  CAS  PubMed  Google Scholar 

  • Ahirwar S, Soni H, Rawat HK, Ganaie MA, Pranaw K, Kango N (2016) Production optimization and functional characterization of thermostable β-mannanase from Malbranchea cinnamomea NFCCI 3724 and its applicability in mannotetraose (M4) generation. J Taiwan Inst Chem Eng 63:344–353

    Article  CAS  Google Scholar 

  • Aiswarya R, Baskar G (2017) Microbial production of L-asparaginase and its immobilization on chitosan for mitigation of acrylamide in heat processed carrot slices. Indian J Exp Biol 56:504–510

    Google Scholar 

  • AMFEP (2009) List of enzymes. In: Association of Manufacturers and Formulators of enzyme products. http://www.amfep.org

  • Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220

    Article  CAS  PubMed  Google Scholar 

  • Arand M, Golubev AM, Neto JR, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV, Neustroev KN (2002) Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochem J 362:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archana A, Satyanarayana T (2003) Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19:53–57

    Article  CAS  Google Scholar 

  • Arnesen S, Havn Eriksen S, Olsen JO, Jensen B (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of tween 80. Enzym Microb Technol 23:249–252

    Article  CAS  Google Scholar 

  • Avwioroko OJ, Anigboro AA, Unachukwu NN, Tonukari NJ (2018) Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. Biochem Biophys Rep 14:35–42

    PubMed  PubMed Central  Google Scholar 

  • Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker IS (2016) Clinical applications of amylase: novel perspectives. Surgery 160:26–37

    Article  PubMed  Google Scholar 

  • Bajpai P (2014) Introduction. In: Xylanolytic enzymes. Academic, Burlington, pp 1–7

    Google Scholar 

  • Bali V, Panesar PS, Bera MB, Panesar R (2015) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490

    Article  CAS  PubMed  Google Scholar 

  • Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genet Eng Rev 33:119–143

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND (1991) Types and families of endopeptidases. Biochem Soc Trans 19:707–715

    Article  CAS  PubMed  Google Scholar 

  • Baskar G, Garrick BG, Lalitha K, Chamundeeswari M (2018) Gold nanoparticle mediated delivery of fungal asparaginase against cancer cells. J Drug Delivery Sci Technol 44:498–504

    Article  CAS  Google Scholar 

  • Berbee M, James TY, Strullu-Derrien C (2017) Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol 71:41–60

    Article  CAS  PubMed  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15:106

    Article  CAS  Google Scholar 

  • Blibech M, Ellouz Ghorbel RE, Chaari F, Dammak I, Bhiri F, Neifar M, Ellouz Chaabouni SE (2011) Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. ISRN Microbiol 2011:1–5

    Article  CAS  Google Scholar 

  • Bohacz J (2016) Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World J Microbiol Biotechnol 33:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonfá EC, de Souza Moretti MM, Gomes E, Bonilla-Rodriguez GO (2018) Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7. Biocatal Agric Biotechnol 13:311–318

    Article  Google Scholar 

  • Budak SO, Zhou M, Brouwer C, Wiebenga A, Benoit I, Di Falco M, Tsang A, de Vries RP (2014) A genomic survey of proteases in aspergilli. BMC Genomics 15:523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  PubMed  Google Scholar 

  • Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394

    Article  CAS  PubMed  Google Scholar 

  • Carrasco M, Alcaíno J, Cifuentes V, Baeza M (2017) Purification and characterization of a novel cold adapted fungal glucoamylase. Microb Cell Factories 16:75

    Article  CAS  Google Scholar 

  • Cavello IA, Cavalitto SF (2014) Kinetic modelling of thermal inactivation of a keratinase from Purpureocillium lilacinum LPSC # 876 and the influence of some additives on its thermal stability. Appl Biochem Biotechnol 173:1927–1939

    Article  CAS  PubMed  Google Scholar 

  • Cesar T, Mrša V (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzym Microb Technol 19:289–296

    Article  CAS  Google Scholar 

  • Chai SY, Abu Bakar FD, Mahadi NM, Murad AMA (2016) A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1: cloning, recombinant expression and characterization. J Mol Catal B Enzym 125:49–57

    Article  CAS  Google Scholar 

  • Chaikumpollert O, Methacanon P, Suchiva K (2004) Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr Polym 57:191–196

    Article  CAS  Google Scholar 

  • Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J Biotechnol 128:452–461

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzym Microb Technol 46:444–449

    Article  CAS  Google Scholar 

  • Chen M, Lei X, Chen C, Zhang S, Xie J, Wei D (2014) Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Appl Biochem Biotechnol 175:1153–1167

    Article  PubMed  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  CAS  PubMed  Google Scholar 

  • Chesini M, Wagner E, Baruque DJ, Vita CE, Cavalitto SF, Ghiringhelli PD, Rojas NL (2018) High level production of a recombinant acid stable exoinulinase from Aspergillus kawachii. Protein Expr Purif 147:29–37

    Article  CAS  PubMed  Google Scholar 

  • Choukade R, Kango N (2019) Characterization of a mycelial fructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem 286:434–440

    Article  CAS  PubMed  Google Scholar 

  • Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MSM, Farsky SHP, de Oliveira MA, Pessoa A, Monteiro G (2016) Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep 6:36239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Gouvêa PF, Bernardi AV, Gerolamo LE, de Souza SE, Riaño-Pachón DM, Uyemura SA, Dinamarco TM (2018) Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics 19:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Paula RG, Antoniêto ACC, Carraro CB, Lopes DCB, Persinoti GF, Peres NTA, Martinez-Rossi NM, Silva-Rocha R, Silva RN (2018) The duality of the MAPK signaling pathway in the control of metabolic processes and cellulase production in Trichoderma reesei. Sci Rep 8:14931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Y, Liu X, Katrolia P, Kopparapu NK, Zheng X (2018) A dual-function chymotrypsin-like serine protease with plasminogen activation and fibrinolytic activities from the GRAS fungus, Neurospora sitophila. Int J Biol Macromol 109:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  CAS  PubMed  Google Scholar 

  • Diaz AB, Blandino A, Webb C, Caro I (2016) Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Appl Microbiol Biotechnol 100:9555–9566

    Article  CAS  PubMed  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  CAS  PubMed  Google Scholar 

  • Dozie INS, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporium keratinophilum. World J Microbiol Biotechnol 10:563–567

    Article  CAS  PubMed  Google Scholar 

  • El-Baky HA, Linke D, Nimtz M, Berger RG (2011) PsoP1, a milk-clotting aspartic peptidase from the basidiomycete fungus Piptoporus soloniensis. J Agric Food Chem 59:10311–10316

    Article  CAS  PubMed  Google Scholar 

  • Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzym Microb Technol 34:85–93

    Article  CAS  Google Scholar 

  • Fitz E, Wanka F, Seiboth B (2018) The promoter toolbox for recombinant gene expression in Trichoderma reesei. Front Bioeng Biotechnol 6:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2014) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267

    Article  PubMed  CAS  Google Scholar 

  • Futai E, Kubo T, Sorimachi H, Suzuki K, Maeda T (2001) Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta Gene Struct Expr 1517:316–319

    Article  CAS  Google Scholar 

  • Ganaie MA, Gupta US, Kango N (2013) Screening microorganisms for fructosyltransferase (FTase) activity for generation of fructo-oligosaccharides (FOS). J Mol Catal B Enzym 97:12–17

    Article  CAS  Google Scholar 

  • Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructo-oligosaccharides. Process Biochem 49:840–844

    Article  CAS  Google Scholar 

  • Gao L, Gao F, Zhang D, Zhang C, Wu G, Chen S (2013) Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresour Technol 147:658–661

    Article  CAS  PubMed  Google Scholar 

  • Gastelum-Arellanez A, Paredes-López O, Olalde-Portugal V (2014) Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 30:2953–2965

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Prajapati BP, Suryawanshi RK, Dey KK, Kango N (2019a) Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem Phys Lett 727:105–115

    Article  CAS  Google Scholar 

  • Ghosh M, Prajapati BP, Kango N, Dey KK (2019b) A comprehensive and comparative study of the internal structure and dynamics of natural β-keratin and regenerated β-keratin by solid state NMR spectroscopy. Solid State Nucl Mag 101:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gopinath SCB, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, Ruslinda AR, Arshad MKM (2015) Biotechnological aspects and perspective of microbial keratinase production. Biomed Res Int 2015:1–10

    Article  CAS  Google Scholar 

  • Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53:196–200

    Article  CAS  PubMed  Google Scholar 

  • Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurunathan B, Sahadevan R (2011) Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioprocess Eng 16:50–58

    Article  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP, Salanovich TN, Bukhtojarov FE, Markov AV, Ustinov BB, Zeijl CV, Punt P, Burlingame R (2005) Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzym Microb Technol 36:57–69

    Article  CAS  Google Scholar 

  • Hamin Neto YAA, da Rosa Garzon NG, Pedezzi R, Cabral H (2017a) Specificity of peptidases secreted by filamentous fungi. Bioengineered 9:30–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamin Neto YAA, de Oliveira LCG, de Oliveira JR, Juliano MA, Juliano L, Arantes EC, Cabral H (2017b) Analysis of the specificity and biochemical characterization of metalloproteases isolated from Eupenicillium javanicum using fluorescence resonance energy transfer peptides. Front Microbiol 7:2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  PubMed  CAS  Google Scholar 

  • Hosamani R, Kaliwal BB (2011) L-Asparaginase- an antitumor agent production by Fusarium equiseti under solid state fermentation. Int J Drug Discov 3:88–99

    Article  Google Scholar 

  • Hsiao HY, Anderson DM, Dale NM (2006) Levels of β-mannan in soybean meal. Poult Sci 85:1430–1432

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Liu X, Li Y, Liu D, Kuang Z, Qian C, Yao D (2017) Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzym Microb Technol 97:82–89

    Article  CAS  Google Scholar 

  • Huang Y, Busk PK, Lange L (2015) Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom Biol 5:119

    Google Scholar 

  • Huang C, Ragauskas AJ, Wu X, Huang Y, Zhou X, He J, Huang C, Lai C, Li X, Yong Q (2018) Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresour Technol 250:365–373

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Kango N, Jain PC (2010) Proteases: significance and applications. In: Maheshwari DK, Dubey RC, Saravanamuthu R (eds) Industrial exploitation of microorganisms. I.K International Publishers, New Delhi, pp 228–254

    Google Scholar 

  • Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N (2018) Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour Technol 268:308–314

    Article  CAS  PubMed  Google Scholar 

  • Jayaramu M, Hemalatha N, Rajeshwari C, Siddalingeshwara K, Mohsi S (2010) A novel approach for detection, confirmation, and optimization of L-asparaginase from Emericella nidulans. Curr Pharm Res 1:20–24

    Article  Google Scholar 

  • Jensen B, Nebelong P, Olsen J, Reeslev M (2002) Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol Lett 24:41–45

    Article  CAS  Google Scholar 

  • Jiang H, Ma Y, Chi Z, Liu GL, Chi ZM (2016) Production, purification, and gene cloning of a β-fructofuranosidase with a high inulin-hydrolyzing activity produced by a novel yeast Aureobasidium sp. p6 isolated from a mangrove ecosystem. Mar Biotechnol 18:500–510

    Article  CAS  PubMed  Google Scholar 

  • Juturu V, Wu J (2012) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363

    Article  CAS  Google Scholar 

  • Kalyani D, Lee KM, Tiwari MK, Ramachandran P, Kim H, Kim IW, Jeya M, Lee JK (2011) Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Appl Microbiol Biotechnol 94:413–423

    Article  PubMed  CAS  Google Scholar 

  • Kammoun R, Naili B, Bejar S (2008) Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour Technol 99:5602–5609

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  PubMed  Google Scholar 

  • Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478

    Article  CAS  Google Scholar 

  • Kango N, Jain PC (2005) Production and application of fungal xylanases. In: Rai MK, Deshmukh SK (eds) Fungi: diversity and biotechnology. Scientific Publishers, New Delhi, pp 251–281

    Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212

    Article  CAS  Google Scholar 

  • Kango N, Agrawal SC, Jain PC (2003) Production of xylanase by Emericella nidulans NK-62 on low-value lignocellulosic substrates. World J Microbiol Biotechnol 19:691–694

    Article  CAS  Google Scholar 

  • Kango N, Soni H, Rawat H (2017) Extremophilic xylanases. In: Sani RK, Navanietha R (eds) Extremophilic bioprocessing of lignocellulosic feedstocks to biofuels, value-added products, and usable power. Springer, Cham, pp 73–88

    Google Scholar 

  • Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 1:e46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJS, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 270:162–170

    Article  CAS  PubMed  Google Scholar 

  • Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP (2009) Isolation and properties of fungal β-glucosidases. Biochemistry 74:569–577

    CAS  PubMed  Google Scholar 

  • Korver DR (2006) Overview of the immune dynamics of the digestive system. J Appl Poult Res 15:123–135

    Article  Google Scholar 

  • Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235

    Article  CAS  PubMed  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Sing S, Wang Z (2011) Improved expression of Rhizopus oryzae α-amylase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 79:142–148

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yi P, Yan Q, Qin Z, Liu X, Jiang Z (2017) Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions. Biotechnol Biofuels 10:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S (2018) Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 8:7915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-D-glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnol Appl Biochem 30:81–87

    CAS  PubMed  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101:905–917

    Article  CAS  PubMed  Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49

    Article  Google Scholar 

  • Malherbe AR, Rose SH, Viljoen-Bloom M, van Zyl WH (2014) Expression and evaluation of enzymes required for the hydrolysis of galactomannan. J Ind Microbiol Biotechnol 41:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y (2016) Secreted fungal aspartic proteases: a review. Rev Iberoam Micol 33:76–82

    Article  PubMed  Google Scholar 

  • Mchunu NP, Permaul K, Abdul Rahman AY, Saito JA, Singh S, Alam M (2013) Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1(3):pii: e00388-13

    Article  Google Scholar 

  • Merz M, Eisele T, Berends P, Appel D, Rabe S, Blank I, Stressler T, Fischer L (2015) Flavourzyme, an enzyme preparation with industrial relevance: automated nine-step purification and partial characterization of eight enzymes. J Agric Food Chem 63:5682–5693

    Article  CAS  PubMed  Google Scholar 

  • Midorikawa GEO, Correa CL, Noronha EF, Filho EXF, Togawa RC, Costa MM d C, Silva-Junior OB, Grynberg P, RNG M (2018) Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front Bioeng Biotechnol 6:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday CH, Losson B (1998) Purification and characterization of a 315 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol 36:395–404

    Article  CAS  PubMed  Google Scholar 

  • Mishra A (2006) Production of L-Asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol 135:33–42

    Article  CAS  PubMed  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  • Moreira-Gasparin FG, de Souza CGM, Costa AM, Alexandrino AM, Bracht C, Boer CK, Peralta RM (2009) Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation 20:727–736

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Powlowski J, Wu M, Butler G, Tsang A (2011) Curation of characterized glycoside hydrolases of fungal origin. Database 2011:bar020-bar020

    Article  CAS  Google Scholar 

  • Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani JI, Kawaguchi T, Morikawa Y, Ogasawara W (2011) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109:92–99

    Article  PubMed  CAS  Google Scholar 

  • Noronha EF, de Lima BD, de Sá CM, Felix CR (2002) Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World J Microbiol Biotechnol 18:563–568

    Article  CAS  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16

    Article  Google Scholar 

  • Parashar D, Satyanarayana T (2017) Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol 99:274–281

    Article  CAS  PubMed  Google Scholar 

  • Pawar VA, Prajapati AS, Akhani RC, Patel DH, Subramanian RB (2018) Molecular and biochemical characterization of a thermostable keratinase from Bacillus altitudinis RBDV1. 3 Biotech 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Peciulyte A, Pisano M, de Vries RP, Olsson L (2017) Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 39:1403–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Porfirif MC, Milatich EJ, Farruggia BM, Romanini D (2016) Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step. J Chromatogr B 1022:87–92

    Article  CAS  Google Scholar 

  • Prajapati BP, Suryawanshi RK, Agrawal S, Ghosh M, Kango N (2018) Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol 250:733–740

    Article  CAS  PubMed  Google Scholar 

  • Qin LM, Dekio S, Jidoi J (1992) Some biochemical characteristics of a partially purified extracellular keratinase from Trichophyton schoenleinii. Zentralbl Bakteriol 277:236–244

    Article  CAS  PubMed  Google Scholar 

  • Raba’atun Adawiyah S, Shuhaimi M, Mohd Yazid AM, Abdul Manaf A, Rosli N, Sreeramanan S (2011) Molecular cloning and sequence analysis of an inulinase gene from an Aspergillus sp. World J Microbiol Biotechnol 27:2173–2185

    Article  CAS  Google Scholar 

  • Rajasree KP, Mathew GM, Pandey A, Sukumaran RK (2013) Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol 40:967–975

    Article  CAS  PubMed  Google Scholar 

  • Rawat HK, Ganaie MA, Kango N (2015a) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructooligosaccharides. Antonie Van Leeuwenhoek 107:799–811

    Article  CAS  PubMed  Google Scholar 

  • Rawat HK, Jain SC, Kango N (2015b) Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin containing vegetal infusions. Biocatal Biotransformation 33:61–68

    Article  CAS  Google Scholar 

  • Rawat HK, Soni H, Treichel H, Kango N (2016) Biotechnological potential of microbial inulinases: recent perspective. Crit Rev Food Sci Nutr 57:3818–3829

    Article  CAS  Google Scholar 

  • Rawat H, Soni H, Kango N (2017) In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Fungal Inulinolytic enzymes: a current appraisal in developments in fungal biology and applied mycology. Springer, Singapore, pp 279–293

    Chapter  Google Scholar 

  • Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Hussein A, Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreus L-asparaginase in Escherichia coli. Int J Biol Macromol 106:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Salamin K, Eugster PJ, Jousson O, Waridel P, Grouzmann E, Monod M (2017) AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae. Appl Microbiol Biotechnol 101:4129–4137

    Article  CAS  PubMed  Google Scholar 

  • Salgaonkar M, Nadar SS, Rathod VK (2018) Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int J Biol Macromol 113:464–475

    Article  CAS  PubMed  Google Scholar 

  • Sarquis MI d M, EMM O, Santos AA, da Costa GL (2004) Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz 99:489–492

    Article  CAS  PubMed  Google Scholar 

  • Sawant S, Birhade S, Anil A, Gilbert H, Lali A (2016) Two-way dynamics in β-glucosidase catalysis. J Mol Catal B Enzym 133:161–166

    Article  CAS  Google Scholar 

  • Saxena A, Upadhyay R, Kango N (2015) Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase. Indian J Exp Biol 53:786–793

    PubMed  Google Scholar 

  • Schmoll M (2018) Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol 1:691–696

    Article  CAS  Google Scholar 

  • Shrivastava A, Khan AA, Shrivastav A, Jain SK, Singhal PK (2012) Kinetic studies of l-asparaginase from Penicillium digitatum. Prep Biochem Biotechnol 42:574–581

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom E (1993) Wood chemistry, fundamentals and application. Academic, San Diego, pp 12–23

    Google Scholar 

  • Soni H, Kango N (2013) Microbial mannanases: properties and applications. In: Shukla P, Pletscke BI (eds) Advances in enzyme biotechnology. Springer, New Delhi, pp 41–56

    Chapter  Google Scholar 

  • Soni H, Rawat HK, Pletschke BI, Kango N (2016) Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech 6:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278

    Article  CAS  Google Scholar 

  • Spohner SC, Czermak P (2016) Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis. New Biotechnol 33:473–479

    Article  CAS  Google Scholar 

  • Suárez MB, Vizcaíno JA, Llobell A, Monte E (2007) Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 51:331–342

    Article  PubMed  CAS  Google Scholar 

  • Suryawanshi RK, Jana UK, Prajapati BP, Kango N (2019) Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 289:95–102

    Article  CAS  PubMed  Google Scholar 

  • Tanriseven A, Aslan Y (2005) Immobilization of pectinex ultra SP-L to produce fructooligosaccharides. Enzym Microb Technol 36:550–554

    Article  CAS  Google Scholar 

  • Trivedi S, Divecha J, Shah A (2012) Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym 90:483–490

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Igarashi K, Yoshida M, Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73:807–814

    Article  CAS  PubMed  Google Scholar 

  • Vaidya S, Srivastava PK, Rathore P, Pandey AK (2015) Amylases: a prospective enzyme in the field of biotechnology. J Appl Biosci 41:1–18

    Google Scholar 

  • Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. Int J Biol Macromol 108:41–46

    Article  CAS  PubMed  Google Scholar 

  • van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203–1213

    Google Scholar 

  • Varalakshmi V, Raju KJ (2013) Optimization of L-asparaginase production by Aspergillus terrus MTCC1782 using bajra seed flour under solid state fermentation. Int J Res Eng Technol 2:121–129

    Article  Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  • Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu ZL, Weber SA, Zhang X (2016a) Two new native β-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast. PLoS One 11:e0151293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Ma J, Zhang Y, Zhang M, Wu M, Dai Z, Jiang M (2016b) Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Appl Biochem Biotechnol 179:880–894

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Duan M, Liu Y, Fan S, Lin X, Zhang Y (2016c) Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol Lett 39:391–396

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li FL, Wang SA (2016d) A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym 151:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X (2017) Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnol Biofuels 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wang D, Lu L, Jin L, Liu J, Song D, Guo Z, Xiao M (2014) Purification, cloning, characterization and n-glycosylation analysis of a novel β-fructosidase from Aspergillus oryzae FS4 synthesizing levan- and neolevan-type fructooligosaccharides. PLoS One 9:e114793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang S, Wang L, Yan Q, Jiang Z, Li L (2009) Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem 115:1247–1252

    Article  CAS  Google Scholar 

  • Yavuz S, Kocabay S, Çetinkaya S, Akkaya B, Akkaya R, Yenidunya AF, Bakıcı MZ (2017) Production, purification, and characterization of metalloprotease from Candida kefyr 41 PSB. Int J Biol Macromol 94:106–113

    Article  CAS  PubMed  Google Scholar 

  • You X, Qin Z, Li YX, Yan QJ, Li B, Jiang ZQ (2018) Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta 1862:1376–1388

    Article  CAS  Google Scholar 

  • Zhang L, Tizard IR (1996) Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel. Immunopharmacology 35:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, An J, Li L, Wang H, Liu D, Li N, Cheng H, Deng Z (2016) Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J Agric Food Chem 64:3828–3837

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Han Y, Xiao H (2017a) Microbial α-amylase: a biomolecular overview. Process Biochem 53:88–101

    Article  CAS  Google Scholar 

  • Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y (2017b) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kango, N., Jana, U.K., Choukade, R. (2019). Fungal Enzymes: Sources and Biotechnological Applications. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_21

Download citation

Publish with us

Policies and ethics