Skip to main content

Rumen Microbiome and Plant Secondary Metabolites (PSM): Inhibition of Methanogenesis and Improving Nutrient Utilization

  • Chapter
  • First Online:

Abstract

Plants contain a large number of secondary compounds which are not required for the primary activities of plants but act as a defense against pathogenic microbes and dust particles. These plant secondary metabolites (PSM) include saponins, tannins, essential oils, alkaloids, terpene compounds, etc. These PSM have strong anti-methanogenic activity, and a few of them have also fiber degradation stimulating activity, but many of these have no effect on feed degradation or have an adverse effect on nutrient release. A proper combination of these PSM might have a balanced activity against methane inhibition and improve fiber degradation, making the process of livestock production economic and eco-friendly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal N, Kamra DN, Chaudhary LC, Patra AK (2006) Effect of Sapindus mukorossi extracts on in vitro methanogenesis and fermentation characteristics in buffalo rumen liquor. J Appl Anim Res 30:1–4

    Article  Google Scholar 

  • Akin DE, Rigsby LL (1987 Sep) Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Appl Environ Microbiol 53(9):1987–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 11(4):207–215. Epub 2005 Mar 27

    Article  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ (1979) Methanogens: reevaluation of a unique biological group, Microbiol. Rev 43(2):260–296

    CAS  Google Scholar 

  • Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595

    Article  CAS  Google Scholar 

  • Cersosimo LM, Bainbridge ML, Kraft J, Wright AD (2016) Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows. BMC Microbiol 16:78. https://doi.org/10.1186/s12866-016-0694-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaichi Semsari M, MaheriSis N, Sadaghian M, Eshratkhah B, Hassanpour S (2011) Effects of administration of industrial tannins on nutrient excretion parameters during naturally acquired mixed nematode infections in Moghani sheep. J Amer Sci 7(6):245–248

    Google Scholar 

  • Chaudhary PP, Sirohi SK (2009). Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Lett Appl Microbiol;49(2):274–277. doi: 10.1111/j.1472-765X.2009.02654.x.Epub 2009 May 27

    Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. [PubMed].s

    Article  CAS  Google Scholar 

  • Dridi B, Henry M, El Kh’echine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut

    Google Scholar 

  • Facey HV, Northwood KS, Wright AD (2012) Molecular diversity of methanogens in fecal samples from captive Sumatran orangutans (Pongo abelii). Am J Primatol 74(5):408–413. https://doi.org/10.1002/ajp.21992

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131. https://doi.org/10.1038/nrmicro1817

    Article  CAS  PubMed  Google Scholar 

  • Franzolin R, St-Pierre B, Northwood K, Wright AD (2012) Analysis of rumen methanogen diversity in water buffaloes (Bubalus bubalis) under three different diets. Microb Ecol 64(1):131–139. https://doi.org/10.1007/s00248-012-0007-0

    Article  CAS  PubMed  Google Scholar 

  • Gilmore SP, Henske JK, Sexton JA, Solomon KV, Seppälä S, Yoo JI, Huyett LM, Pressman A, Cogan JZ, Kivenson V, Peng X, Tan Y, Valentine DL, O’Malley MA (2017) Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 18(1):639. https://doi.org/10.1186/s12864-017-4036-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güçlü-Ustündağ O, Mazza G (2007) Saponins: properties, applications and processing

    Article  Google Scholar 

  • Haslam E (1989) Plant polyphenols- vegetable tannins revisited. Cambridge University Press, Cambridge

    Google Scholar 

  • Hassanpour S, Sadaghian M, MaheriSis N, Eshratkhah B, Chaichi SM (2011) Effect of condensed tannin on controlling faecal protein excretion in nematode-infected sheep: in vivo study. J Amer Sci 7(5):896–900

    Google Scholar 

  • Henderson G, Cox F, Ganesh S, Jonker A, Young W (2015 Oct 9) Global rumen census collaborators, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567. https://doi.org/10.1038/srep14567. Erratum in: Sci Rep. 2016;6:19175. Yanez-Ruiz, David R [corrected to Yáñez-Ruiz, David R]; Pinares-Patino, Cesar [corrected to Pinares-Patiño, Cesar]; Munoz, Camila [corrected to Muñoz, Camila].

  • Hess HD, Beuret RA, Lötscher M, Hindrichsen IK, Machmüller A, Carulla JE, Lascano CE, Kreuzer M (2004) Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Anim Sci 79:177–189

    Article  Google Scholar 

  • Hervás G, Frutos P, Giráldez FJ, Mantecón ÁR, Del Pino MC (2003) Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Anim Feed Sci Technol 109:65–78

    Article  Google Scholar 

  • Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009 Jun) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J Dairy Sci 92(6):2809–2821. https://doi.org/10.3168/jds.2008-1843. Erratum in: J Dairy Sci. 2009 Jul;92(7):3543. Odongo, N E [added]

    Article  CAS  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625. https://doi.org/10.1128/AEM.02812-07. Epub 2008 Apr 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73(8):2483–2492

    Article  CAS  Google Scholar 

  • Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG (2017) Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS One. https://doi.org/10.1371/Journal.pone.0172051

    Article  Google Scholar 

  • Kamra DN, Patra AK, Chatterjee PN, Kumar R, Agarwal N, Chaudhary LC (2008) Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric Res Aust J Exp Agric 48:175–178

    Article  CAS  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135

    CAS  Google Scholar 

  • Kamra DN, Zadbuke S, Agarwal N, Choudhary LC, Bhar R (2010) Anti methane. Patent submitted

    Google Scholar 

  • Kamra DN, PawarM, Agarwal N, Choudhary LC, Chaturvedi VB (2012) Methane Suppressor, Patent submitted

    Google Scholar 

  • Kelly WJ, Pacheco DM, Li D, Attwood GT, Altermann E, Leahy SC (2016) The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9. Stand Genomic Sci 11:49. https://doi.org/10.1186/s40793-016-0171-9. eCollection 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King EE, Smith RP, St-Pierre B, Wright AD (2011) Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen. Appl Environ Microbiol 77(16):5682–5687. https://doi.org/10.1128/AEM.05130-11. Epub 2011 Jun 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8(2):e47879. https://doi.org/10.1371/journal.pone.0047879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis WH, Sendra KM, Embley TM, Esteban GF (2018) Morphology and phylogeny of a new species of anaerobic ciliate, Trimyemafinlayi n. sp., with endosymbiotic methanogens. Front Microbiol 9:140. https://doi.org/10.3389/fmicb.2018.00140. eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Curr Biol 28(13):R727–R732. https://doi.org/10.1016/j.cub.2018.05.021

    Article  CAS  PubMed  Google Scholar 

  • Malik PK, Kolte AP, Bakshi B, Baruah L, Bhatta R (2017). Enteric methane mitigation in sheep through selected tanniniferous tropical tree leaves. Livestock Science. 2016

    Google Scholar 

  • Mi J, Zhou J, Huang X, Long R (2017) Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters. PLoS One 12(1):e0170044. https://doi.org/10.1371/journal.pone.0170044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81:102–109

    Google Scholar 

  • Orpin CG (1988) Nutrition and biochemistry of anaerobic Chytridiomycetes. Biosystems 21(3–4):365–370

    Article  CAS  Google Scholar 

  • Ozbayram EG, Ince O, Ince B, Harms H, Kleinsteuber S (2018). Comparison of Rumen and Manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6(1). pii: E15. https://doi.org/10.3390/microorganisms6010015

    Article  Google Scholar 

  • Patra AK, Saxena J (2010) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 91:24–37

    Article  Google Scholar 

  • Patra AK, Yu Z (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol 78(12):4271–4280. https://doi.org/10.1128/AEM.00309-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra AK, Kamra DN, Agarwal N (2006) Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int Congr Ser 1293:176–179

    Article  CAS  Google Scholar 

  • Patra AK, Kamra DN, Bhar R, Kumar R, Agarwal N (2011) Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J Anim Physiol Anim Nutr 95:187–191

    Article  CAS  Google Scholar 

  • Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy A, Morrison M (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from tammar wallabies. Science 333:646–648

    Article  CAS  Google Scholar 

  • Rea S, Bowman JP, Popovski S, Pimm C, Wright AD (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(Pt 3):450–456

    Article  CAS  Google Scholar 

  • Ross ZM, O’GaraEA HDJ, SleightholmeHV MDJ (2001) Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl Environ Microbiol 67:475–480

    Article  CAS  Google Scholar 

  • Rouviere W, Fiebig K, Hippe H (1983) Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 20(3):407–410

    Article  Google Scholar 

  • Samal L, Chaudary LC, Agarwal N, Kamra DN (2016) Impact of phytogenic feed additives on growth performance, nutrient digestion and methanogenesis in growing buffaloes. Anim Prod Sci 55:1056–1063

    Google Scholar 

  • Santoso B, Mwenya B, Sar C, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J (2004) Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest Prod Sci 91:209–217

    Article  Google Scholar 

  • Sharma S, Ding Y, Jarrell KF, Brockhausen I (2018) Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 35(6):525–535. https://doi.org/10.1007/s10719-018-9845-4

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21(4):499–510. https://doi.org/10.1071/RD08172

    Article  CAS  PubMed  Google Scholar 

  • Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya, PR, Rank DN, Murty DS, Kothari RK, Joshi C.G. (2011). Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4): 4841–4848 https://doi.org/10.1007/s11033-011-1278-0. Epub 2011 Sep 27

    Article  Google Scholar 

  • Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya PR, Rank DN, Murty DS, Kothari RK, Joshi CG (2012 Apr) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39(4):4841–4848. https://doi.org/10.1007/s11033-011-1278-0. Epub 2011 Sep 27

    Article  Google Scholar 

  • Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166. https://doi.org/10.1016/j.gene.2013.04.002. Epub 2013 Apr 18

    Article  CAS  PubMed  Google Scholar 

  • Sliwiński BJ, Kreuzer M, Wettstein HR, Machmüller A (2002 Dec) Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch Tierernahr 56(6):379–392

    Article  Google Scholar 

  • Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M (1996) Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric Food Chem 44:1202–1205

    Article  CAS  Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (1998 Feb) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26(2):118–122

    Article  CAS  Google Scholar 

  • St-Pierre B, Wright AD (2012 Jan 5) Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol 12(1). https://doi.org/10.1186/1471-2180-12-1

    Article  CAS  Google Scholar 

  • Turnbull KL, Smith RP, St-Pierre B, Wright AD (2012) Molecular diversity of methanogens in fecal samples from Bactrian camels (Camelus bactrianus) at two zoos. Res Vet Sci 93(1):246–249. https://doi.org/10.1016/j.rvsc.2011.08.013. Epub 2011 Sep 13

    Article  CAS  PubMed  Google Scholar 

  • Waghorn G (2008) Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production- Progress and challenges. Anim Feed Sci Technol 147:116–139

    Article  CAS  Google Scholar 

  • Whitford V, Ennos AR, Handley JF (2001). ‘City form and natural process’ – indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc Urban Plan 57(2):91–103

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990 Jun) Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579

    Article  CAS  Google Scholar 

  • Wright AD, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70(3):1263–1270

    Article  CAS  Google Scholar 

  • Wright AD, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73(13):4206–4210. Epub 2007 May 4

    Article  CAS  Google Scholar 

  • Wright AD, Ma X, Obispo NE (2008 Aug) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 56(2):390–394. https://doi.org/10.1007/s00248-007-9351-x. Epub 2007 Dec 29

    Article  Google Scholar 

  • Wright AD, Northwood KS, Obispo NE (2009) Rumen-like methanogens identified from the crop of the folivorous. South American bird, the hoatzin (Opisthocomus hoazin) 3(10):1120–1126. https://doi.org/10.1038/ismej.2009.41. Epub 2009 Apr 23

    Article  CAS  Google Scholar 

  • Yatoo MA, Chaudhary LC, Agarwal N, Chaturvedi VB, Kamra DN (2018) Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes. Asian-Australas J Anim Sci 31(5):672–676. https://doi.org/10.5713/ajas.16.0508. Epub 2017 Feb 23

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y-Y, Mao H-L, Jiang F et al (2010). Tea saponins inhibit ruminal methane emission through the inhibitory effect on protozoa in Hu sheep. In: Proceedings of Fourth Greenhouse Gases and Animal Agric. Conference

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamra, D.N., Singh, B. (2019). Rumen Microbiome and Plant Secondary Metabolites (PSM): Inhibition of Methanogenesis and Improving Nutrient Utilization. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_13

Download citation

Publish with us

Policies and ethics