Skip to main content

Detecting Driver Drowsiness Based Fusion Multi-sensors Method

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 536)

Abstract

In recent years, driver’s drowsiness is one of the main causes of traffic accidents, which can result in severe physical injury and serious economic loss. Fatigue of the driver is an important factor in road accidents, and fatigue detection has a significant influence on traffic safety. This article describes a drowsiness detection approach based on the combination of various multi-sensors. The present study proposed a method to detect the driver’s drowsiness that combines features of electrocardiography (ECG) and environmental factors, such as vehicle temperature and humidity, to improve detection performance. The activity of the autonomic nervous system which can be measured in heart rate variability (HRV) signals obtained from surface ECG, indicates changes during stress, extreme fatigue, and episodes of drowsiness. The combination of the multi-sensors feature of drowsiness is significant factors in determining the driver’s fatigue state and can use this information to transportation drowsy driving control center if necessary.

Keywords

  • Sensors data fusion
  • Driver drowsiness detection
  • Biosensors
  • Environmental sensors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-9341-9_79
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-9341-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Seugnet, L., Boero, J., Gottschalk, L., Duntley, S.P., Snaw, P.J.: Identification of a biomarker for sleep drive in flies and human. Proc. Natl. Acad. Sci. 103(52), 19913–19918 (2006)

    CrossRef  Google Scholar 

  2. http://www.police.go.kr/portal/bbs/list.do?bbsId=B0000011&menuNo=200488

  3. Husar, P.: Eyetracker Warns against Momentary Driver Drowsiness. http://www.fraunhofer.de/en/press/research-news/2010/10/eye-tracker-driver-drowsiness.html. Accessed 27 July 2012

  4. Kosmadopoulos, A., Sargent, C., Zhou, X., Darwent, D., Matthews, R.W., Dawson, D., et al.: The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment. Accid. Anal. Prev. 99, 445–451 (2015)

    CrossRef  Google Scholar 

  5. Schmidt, E., Decke, R., Rasshofer, R.: Correlation between subjective driver state measures and psychophysiological and vehicular data in simulated driving. In: Intelligent Vehicles Symposium (IV), pp. 1380–1385. IEEE (2016)

    Google Scholar 

  6. Chen, C., Li, K., Wu, Q., Wang, H., Qian, Z., Sudlow, G.: EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays 34(2), 81–88 (2013)

    CrossRef  Google Scholar 

  7. Wierwille, W.W., Ellsworth, L.A., Wreggit, S.S., Fairbanks, R.J., Kirn, C.L.: Research on vehicle-based driver status/performance monitoring development, validation, and refinement of algorithms for detection of driver drowsiness. Technical report, DOT HS 808 247, Office of Crash Avoidance Research National Highway Traffic Safety (1994)

    Google Scholar 

  8. Forsman, P.M., Vila, B.J., Short, R.A., Mott, C.G., van Dongen, H.P.A.: Efficient driver drowsiness detection at moderate levels of drowsiness. Accid. Anal. Prevent. 50, 341–350 (2012)

    CrossRef  Google Scholar 

  9. Sahayadhas, A., Sundaraj, K., Murugappan, M.: Detecting driver drowsiness based on sensors: a review. Sensors 12(12), 16937–16953. https://doi.org/10.3390/s121216937, PMID: 23223151 (2012)

    CrossRef  Google Scholar 

  10. Zhang, Z., Zhang, J.: A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. J. Control Theor. Appl. 2010(8), 181–188 (2010)

    CrossRef  Google Scholar 

  11. Jo, J., Lee, S.J., Park, K.R., Kim, I.-J., Kim, J.: Detecting driver drowsiness using feature-level fusion and user specific classification. Expert Syst. Appl. 41(4), 1139–1152 (2014)

    CrossRef  Google Scholar 

  12. Jianfeng, H., Zhendong, M., Ping, W.: Multi-feature authentication system based on event evoked electroencephalogram. J. Med. Imaging Health Inform. 5(4), 862–870 (2015)

    CrossRef  Google Scholar 

  13. Wang, H.: Detection and alleviation of driving fatigue based on EMG and EMS/EEG using wearable sensor. In: 2015 Proceedings of the 5th EAI International Conference on Wireless Mobile Comm. and Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 155–157 (2015)

    Google Scholar 

  14. Task Force of ESC and NASPE: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    CrossRef  Google Scholar 

  15. Patel, M., Lal, S.K.L., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Exp. Syst. Appl. 38, 7235–7242 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funder by the Korea government (MSIT) (2017-0-00336, Platform Development of Multi-log based Multi-Modal Data Convergence Analysis and Situational Response.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2018R1D1A1B07047112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongIk Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kim, S., Park, H., Lee, YT., Yoon, Y. (2020). Detecting Driver Drowsiness Based Fusion Multi-sensors Method. In: Park, J., Park, DS., Jeong, YS., Pan, Y. (eds) Advances in Computer Science and Ubiquitous Computing. CUTE CSA 2018 2018. Lecture Notes in Electrical Engineering, vol 536. Springer, Singapore. https://doi.org/10.1007/978-981-13-9341-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9341-9_79

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9340-2

  • Online ISBN: 978-981-13-9341-9

  • eBook Packages: EngineeringEngineering (R0)