Advertisement

Ensemble of Deep Learning Approaches for ATC Classification

  • Loris Nanni
  • Sheryl BrahnamEmail author
  • Alessandra Lumini
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 159)

Abstract

Anatomical Therapeutic Chemical (ATC) classification of unknown compounds is essential for drug development and research. In this paper, we propose a multi-label classifier system for ATC prediction based on convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. The CNN approach extracts a 1D feature vector from the compounds utilizing information about their chemical–chemical interaction and structural and fingerprint similarities to other compounds belonging to the ATC classes. The 1D vector is then reshaped into a 2D matrix. A CNN is trained on the matrix and used to extract new features. LSTM is trained on the 1D vector and likewise used to extract features. These features are then trained on two general-purpose classifiers designed for multi-label classification, and results are fused. Rigorous experimental evaluation demonstrates the superiority of our method compared to other state-of-the-art approaches.

Keywords

ATC classification Deep learning Convolutional neural networks Long short-term memory networks 

Notes

Acknowledgements

We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program. We used a donated TitanX GPU to train the CNNs used in this work.

References

  1. 1.
    Pitts, R.C.: Reconsidering the concept of behavioral mechanisms of drug action. J. Exp. Anal. Behav. 101, 422–441 (2014)CrossRefGoogle Scholar
  2. 2.
    Chen, L.: Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS ONE 7, (2012)CrossRefGoogle Scholar
  3. 3.
    Dunkel, M., Günther, S., Ahmed, J., Wittig, B., Preissner, R.: SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 36, W55–W59 (2008)CrossRefGoogle Scholar
  4. 4.
    Wu, L., Ai, N., Liu, Y., Fan, X.: Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J. Chem. Inf. Model. 53, 2154–2160 (2013)CrossRefGoogle Scholar
  5. 5.
    Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Cheng, X., Zhao, S.-G., Xiao, X., Chou, K.-C.: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics 33, 341–346 (2017)CrossRefGoogle Scholar
  7. 7.
    Cheng, X., Zhao, S.-G., Xiao, X., Chou, K.-C.: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget 8, 58494–58503 (2017)Google Scholar
  8. 8.
    Nanni, L., Brahnam, S.: Multi-label classifier based on histogram of gradients for predicting the anatomical therapeutic chemical class/classes of a given compound. Bioinformatics 33, 2837–2841 (2017)CrossRefGoogle Scholar
  9. 9.
    Lumini, A., Nanni, L.: Convolutional neural networks for ATC classification. Curr. Pharm. Des. (In Press)Google Scholar
  10. 10.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)CrossRefGoogle Scholar
  11. 11.
    Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted versus non-handcrafted features for computer vision classification. Pattern Recognit 71, 158–172 (2017)CrossRefGoogle Scholar
  12. 12.
    Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24, 5017–5032 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nanni, L., Ghidoni, S.: How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit Lett 85, 1–88 (2017)CrossRefGoogle Scholar
  14. 14.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRefGoogle Scholar
  15. 15.
    Nanni, L., Brahnam, S., Lumini, A.: Matrix representation in pattern classification. Expert Syst. Appl. 39(3), 3031–3036 (2012)CrossRefGoogle Scholar
  16. 16.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323 (1998)CrossRefGoogle Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing System, pp. 1097–1105. Curran Associates Inc, Red Hook, NY (2012)Google Scholar
  18. 18.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Cornell University (2014)Google Scholar
  19. 19.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  20. 20.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, NV (2016)Google Scholar
  21. 21.
    Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? Cornell University (2014)Google Scholar
  22. 22.
    Zhang, M.-L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach Intell 37, 107–120 (2015)CrossRefGoogle Scholar
  23. 23.
    Kimura, K., Sun, L., Kudo, M.: MLC toolbox: A MATLAB/OCTAVE library for multi-label classification. ArXiv arXiv:1704.02592 (2017)
  24. 24.
    Chou, K.C.: Some remarks on predicting multi-label attributes in molecular biosystems. Mol. BioSyst. 9, 10922–11100 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Loris Nanni
    • 1
  • Sheryl Brahnam
    • 2
    Email author
  • Alessandra Lumini
    • 3
  1. 1.DEI—University of PadovaPaduaItaly
  2. 2.Management and Information Systems, Glass Hall, Room 387Missouri State UniversitySpringfieldUSA
  3. 3.DISIUniversità di BolognaCesenaItaly

Personalised recommendations