Multidimensional Classification for Altered Igneous Rocks

  • Surendra P. VermaEmail author


One of the fundamental requirements of igneous rock geochemistry has been to correctly classify altered igneous rocks, because the International Union of Geological Sciences (IUGS) has only provided guidelines for the classification of fresh rocks. This chapter describes the multi-dimensional solution of this complex problem consistent with the IUGS classification scheme of the TAS diagram and CIPW norm. The assumption of multivariate normality can be fulfilled from a recently published computer program DOMuDAF available for online use at The chapter describes at detail how the complex solution of the replacement of the TAS diagram has been achieved and the new robust multi-dimensional classification scheme can be used online at the above-mentioned web portal. The chapter ends with the indications of the diagrams that can be converted to multi-dimensions.


  1. Aitchison, J. (1986). The statistical analysis of compositional data. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  2. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  3. Binard, N., Maury, R. C., Guille, G., Talandier, J., Gillot, P. Y., & Cotten, J. (1993). Mehetia island, South Pacific: Geology and petrology of the emerged part of the Society hot spot. Journal of Volcanology and Geothermal Research, 55, 239–260.CrossRefGoogle Scholar
  4. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.CrossRefGoogle Scholar
  5. Filzmoser, P., Hron, K., & Templ, M. (2012). Discriminant analysis for compositional data and robust parameter estimation. Computational Statistics, 27, 585–604.Google Scholar
  6. Floyd, P. A., & Winchester, J. A. (1975). Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27, 211–218.CrossRefGoogle Scholar
  7. Floyd, P. A., & Winchester, J. A. (1978). Identification and discrimination of altered and meta-morphosed volcanic rocks using immobile elements. Chemical Geology, 21, 291–306.CrossRefGoogle Scholar
  8. Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48, 2341–2357.CrossRefGoogle Scholar
  9. Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41, 1467–1470.CrossRefGoogle Scholar
  10. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.CrossRefGoogle Scholar
  11. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., et al. (2002). Igneous rocks. A classification and glossary of terms: Recommendations of the international union of geological sciences subcommission of the systematics of igneous rocks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Manikyamba, C., Naqvi, S. M., Rao, D. V. S., Mohan, M. R., Khanna, T. C., Rao, T. G., et al. (2005). Boninites from the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India: implications for Archaean subduction processes. Earth and Planetary Science Letters, 230, 65–83.CrossRefGoogle Scholar
  13. Morrison, D. F. (1990). Multivariate statistical methods. New York: McGraw-Hill Publishing Co.Google Scholar
  14. Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.CrossRefGoogle Scholar
  15. Rencher, A. C. (2002). Methods of multivariate analysis. New York: Wiley-Interscience.CrossRefGoogle Scholar
  16. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth Science Reviews, 12, 1–33.CrossRefGoogle Scholar
  17. Upton, B. G. J., Semet, M. P., & Joron, J. L. (2000). Cumulate clasts in the Bellecombe ash member, Piton de la Fournaise, Réunion island, and their bearing on cumulative processes in the petrogenesis of the Réunion lavas. Journal of Volcanology and Geothermal Research, 104, 297–318.CrossRefGoogle Scholar
  18. Verma, S. P. (1997). Sixteen statistical tests for outlier detection and rejection in evaluation of international geochemical reference materials: Example of microgabbro PM-S. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 59–75.CrossRefGoogle Scholar
  19. Verma, S. P. (2015). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  20. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  21. Verma, S. P., Díaz-González, L., & González-Ramírez, R. (2009). Relative efficiency of single-outlier discordancy tests for processing geochemical data on reference materials and application to instrumental calibration by a weighted least-squares linear regression model. Geostandards and Geoanalytical Research, 33, 29–49.CrossRefGoogle Scholar
  22. Verma, S. P., Díaz-González, L., & Rivera-Gómez, M. A. (2019). New multidimensional classification scheme of altered igneous rocks from performance comparison of isometric and modified log-ratio transformations of major elements. Geochemical Transactions, submitted.Google Scholar
  23. Verma, S. P., & Rivera-Gómez, M. A. (2017). Transformed major element based multidimensional classification of altered volcanic rocks. Episodes, 40, 295–303.CrossRefGoogle Scholar
  24. Verma, S. P., Rivera-Gómez, M. A., Díaz-González, L., Pandarinath, K., Amezcua-Valdez, A., Rosales-Rivera, M., et al. (2017). Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments. Lithos, 278, 321–330.CrossRefGoogle Scholar
  25. Verma, S. P., Rivera-Gómez, M. A., Díaz-González, L., & Quiroz-Ruiz, A. (2016). Log-ratio transformed major-element based multidimensional classification for altered High-Mg igneous rocks. Geochemistry, Geophysics, Geosystems, 17, 4955–4972.CrossRefGoogle Scholar
  26. Verma, S. P., Rodríguez-Ríos, R., & González-Ramírez, R. (2010). Statistical evaluation of classification diagrams for altered igneous rocks. Turkish Journal of Earth Sciences, 19, 239–265.Google Scholar
  27. Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22, 931–995.CrossRefGoogle Scholar
  28. Wilks, S. S. (1963). Multivariate statistical outliers. Sankhya, 25, 407–426.Google Scholar
  29. Winchester, J. A., & Floyd, P. A. (1976). Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28, 459–469.CrossRefGoogle Scholar
  30. Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations