Advertisement

Theory of Fractional Differential Equations Using Inequalities and Comparison Theorems: A Survey

  • J. V. DeviEmail author
  • F. A. McRae
  • Z. Drici
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this chapter, we present a survey of the qualitative theory pertaining to fractional differential equations (FDEs) developed using differential inequalities and comparison theorems. Differential inequalities help in finding bounds for the solution of the nonlinear fractional differential equation, and once the bounds are known the constructive techniques of Quasilinearization and Monotone Iterative Technique provide the solution.

References

  1. 1.
    Abbas, S., Bechohra, M.: Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal.: Hybrid Syst. 4, 406–413 (2010)MathSciNetGoogle Scholar
  2. 2.
    Adjabi, Y., et al.: On generalized fractional operators and a gronwall type inequality with applications. Filomat 31(17), 5457–5473 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Agarwal, R., Hristova, S., O’Regan, D.: Caputo fractional differential equations with non-instantaneous impulses and strict stability by Lyapunov functions. Filomat 31(16), 5217–5239 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agarwal, R., O’Regan, D., Hristova, S.: Stability with initial time difference of Caputo fractional differential equations by Lyapunov functions. Z. Anal. Anwend. 36(1), 49–77 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Agarwal, R., O’Regan, D., Hristova, S.: Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 60(6), 653–676 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Agarwal, R.P., Benchohra, M., Hamani, S., Pinelas, S.: Upper and lower solutions method for impulsive differential equations involving the Caputo fractional derivative. Mem. Differ. Equ. Math. Phys. 53, 1–12 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bushnaq, S., Khan, S.A., Shah, K., Zaman, G.: Mathematical analysis of HIV/AIDS infection model with Caputo-Fabrizio fractional derivative. Cogent Math. Stat. 5(1), 1432521 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Devi, J.V., Radhika, V.: Quasilinearization for hybrid Caputo fractional differential equations. Dyn. Syst. Appl. 21(4), 567–581 (2012)Google Scholar
  9. 9.
    Devi, J.V., Radhika, V.: Generalized quasilinearization for hybrid Caputo fractional differential equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 19(6), 745–756 (2012)Google Scholar
  10. 10.
    Denton, Z., Ng, P.W., Vatsala, A.S.: Quasilinearization method via lower and upper solutions for Riemann-Liouville fractional differential equations. Nonlinear Dyn. Syst. Theory 11(3), 239–251 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Drici, Z., McRae, F., Devi, J.V.: On the existence and stability of solutions of hybrid Caputo differential equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A 19, 501–512 (2012)Google Scholar
  12. 12.
    Giribabu, N., Devi, J.V., Deekshitulu, G.V.S.R.: Monotone iterative technique for Caputo fractional differential equations with variable moments of impulse. Dyn. Contin. Discret. Impuls. Syst. Ser. B 24, 25–48 (2017)Google Scholar
  13. 13.
    Giribabu, N., Devi, J.V., Deekshitulu, G.V.S.R.: The method of upper and lower solutions for initial value problem of caputo fractional differential equations with variable moments of impulse. Dyn. Contin. Discret. Impuls. Syst. Seri. A 24, 41–54 (2017)Google Scholar
  14. 14.
    Giribabu, N.: On pulse phenomena involving hybrid caputo fractional differential equations with variable moments of impulse. GJMS Spec. Issue Adv. Math. Sci. Appl.-13 GJMS 2(2), 93–101 (2014)Google Scholar
  15. 15.
    Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jankowski, T.: Systems of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 18(1), 122–132 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jankowski, T.: Fractional problems with advanced arguments. Appl. Math. Comput. 230, 371–382 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jankowski, T.: Boundary problems for fractional differential equations. Appl. Math. Lett. 28, 14–19 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jankowski, T.: Existence results to delay fractional differential equations with nonlinear boundary conditions. Appl. Math. Comput. 219(17), 9155–9164 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jankowski, T.: Fractional equations of Volterra type involving a Riemann-Liouville derivative. Appl. Math. Lett. 26(3), 344–350 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jalilian, Y.: Fractional integral inequalities and their applications to fractional differential inequalities. Acta Math. Sci. 36B(5), 1317–1330 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677–2682 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lakshmikantham, V., Vatsala, A.S.: Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11(3–2), 395–402 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)zbMATHGoogle Scholar
  25. 25.
    Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities, vol. I. Academic Press, New York (1969)zbMATHGoogle Scholar
  26. 26.
    Lin, L., Liu X., Fang, H.: Method of upper and lower solutions for fractional differential equations. Electron. J. Differ. Equ. 1–13 (2012)Google Scholar
  27. 27.
    Andric, M., Barbir, A., Farid, G., Pecaric, J.: Opial-type inequality due to AgarwalPang and fractional differential inequalities. Integr. Transform. Spec. Funct. 25(4), 324–335 (2014).  https://doi.org/10.1080/10652469.2013.851079MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sarikaya, M.Z., Set, E., Yaldiz, H., Baak, N.: HermiteHadamards inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9–10), 2403–2407 (2013)CrossRefGoogle Scholar
  29. 29.
    Nanware, J.A., Dhaigude, D.B.: Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions. J. Nonlinear Sci. Appl. 7(4), 246–254 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pham, T.T., Ramirez, J.D., Vatsala, A.S.: Generalized monotone method for Caputo fractional differential equations with applications to population models. Neural Parallel Sci. Comput. 20(2), 119–132 (2012)MathSciNetGoogle Scholar
  31. 31.
    Sambandham, B., Vatsala, A.S.: Basic results for sequential Caputo fractional differential equations. Mathematics 3, 76–91 (2015)CrossRefGoogle Scholar
  32. 32.
    Sambandham, B., Vatsala, A.S.: Numerical results for linear Caputo fractional differential equations with variable coefficients and applications. Neural Parallel Sci. Comput. 23(2–4), 253–265 (2015)Google Scholar
  33. 33.
    Sowmya, M., Vatsala, A.S.: Generalized iterative methods for Caputo fractional differential equations via coupled lower and upper solutions with superlinear convergence. Nonlinear Dyn. Syst. Theory 15(2), 198–208 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Stutson, D.S., Vatsala, A.S.: Riemann Liouville and Caputo fractional differential and integral inequalities. Dyn. Syst. Appl. 23(4), 723–733 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Devi, J.V., Deo, S.G., Nagamani, S.: On fractional trigonometric functions and their generalizations. Dyn. Syst. Appl. 22 (2013)Google Scholar
  36. 36.
    Devi, J.V., Namagani, S.: On fractional hyperbolic functions and their generalizations. Nonlinear Stud. 20(3), 1–19 (2013)Google Scholar
  37. 37.
    Devi, J.V., Sreedhar, C.V.: Generalized monotone iterative method for Caputo fractional integro-differential equations. Eur. J. Pure Appl. Math. 9(4), 346–359 (2016)Google Scholar
  38. 38.
    Devi, J.V., McRae, F., Drici, Z.: Variational Lyapunov method for fractional differential equations. Comput. Math. Appl. 64, 2982–2989 (2012)Google Scholar
  39. 39.
    Devi, J.V, Kishore, M.P.K., Ravi Kumar, R.V.G.: On existence of component dominating solutions for fractional differential equations. Nonlinear Stud., 21(1), 45–52 (2014)Google Scholar
  40. 40.
    Wang, G.: Monotone iterative technique for boundary value problems of nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 236, 2425–2430 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wang, G., Agarwal, R.P., Cabada, A.: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 1019–1024 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wang, G., Baleanu, D., Zhang, L.: Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15(2), 244–252 (2012)Google Scholar
  43. 43.
    Wang, X.: Wang, L., Zeng, Q.: Fractional differential equations with integral boundary conditions. J. Nonlinear Sci. Appl. 8, 309–314 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Yakar, C.: Fractional differential equations in terms of comparison results and Lyapunov stability with initial time difference. Abstr. Appl. Anal. (2010)Google Scholar
  45. 45.
    Yakar, C., Yakar, A.: Monotone iterative technique with initial time difference for fractional differential equations. Hacet. J. Math. Stat. 40(2), 331–340 (2011)Google Scholar
  46. 46.
    Zhang, L., Ahmad, B., Wang, G.: The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative. Appl. Math. Lett. 31, 1–6 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Lakshmikantham Institute for Advanced StudiesGayatri Vidya Parishad College of Engineering (Autonomous)ViskhapatnamIndia
  2. 2.Department of MathematicsCatholic University of AmericaWashingtonUSA
  3. 3.Department of MathematicsIllinois Wesleyan UniversityBloomingtonUSA

Personalised recommendations