Skip to main content

Adomian Decomposition Method and Fractional Poisson Processes: A Survey

  • Conference paper
  • First Online:
Fractional Calculus and Fractional Differential Equations

Part of the book series: Trends in Mathematics ((TM))

  • 1342 Accesses

Abstract

This paper gives a survey of recent results related to the applications of the Adomian decomposition method (ADM) to certain fractional generalizations of the homogeneous Poisson process. First, we briefly discuss the ADM and its advantages over existing methods. As applications, this method is employed to obtain the state probabilities of the time fractional Poisson process (TFPP), space fractional Poisson process (SFPP) and Saigo space–time fractional Poisson process (SSTFPP). Usually, the Laplace transform technique is used to obtain the state probabilities of fractional processes. However, for certain state-dependent fractional Poisson processes, the Laplace transform method is difficult to apply, but the ADM method could be effectively used to obtain the state probabilities of such processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adomian, G.: Nonlinear Stochastic Operator Equations. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  2. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  3. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1826 (2009)

    Article  MathSciNet  Google Scholar 

  4. Biard, R., Saussereau, B.: Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A.: Parameter estimation for fractional Poisson processes. J. Stat. Plann. Inference 140(11), 3106–3120 (2010)

    Article  MathSciNet  Google Scholar 

  6. Garra, R., Orsingher, E., Polito, F.: State-dependent fractional point processes. J. Appl. Probab. 52, 18–36 (2015)

    Article  MathSciNet  Google Scholar 

  7. Kataria, K.K., Vellaisamy, P.: Simple parametrization methods for generating Adomian polynomials. Appl. Anal. Discret. Math. 10, 168–185 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kataria, K.K., Vellaisamy, P.: Saigo space-time fractional Poisson process via Adomian decomposition method. Stat. Probab. Lett. 129, 69–80 (2017)

    Article  MathSciNet  Google Scholar 

  9. Kataria, K.K., Vellaisamy, P.: Correlation between Adomian and partial exponential Bell polynomials. C. R. Math. Acad. Sci. Paris 355(9), 929–936 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kataria, K.K., Vellaisamy, P.: On distributions of certain state dependent fractional point processes. J. Theor. Probab. (2019). https://doi.org/10.1007/s10959-018-0835-z

    Article  MathSciNet  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theroy and Applications fo Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Laskin, N.: Fractional Poisson Process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)

    Article  MathSciNet  Google Scholar 

  13. Laskin, N.: Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50(11), 113513 (2009)

    Article  MathSciNet  Google Scholar 

  14. Maheshwari, A., Vellaisamy, P.: On the long-range dependence of fractional Poisson and negative binomial processes. J. Appl. Probab. 53(4), 989–1000 (2016)

    Article  MathSciNet  Google Scholar 

  15. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)

    Article  MathSciNet  Google Scholar 

  16. Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41, 623–638 (2004)

    Article  MathSciNet  Google Scholar 

  17. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  18. Orsingher, E., Polito, F.: Fractional pure birth processes. Bernoulli 16, 858–881 (2010)

    Article  MathSciNet  Google Scholar 

  19. Orsingher, E., Polito, F.: The space-fractional Poisson process. Stat. Probab. Lett. 82, 852–858 (2012)

    Article  MathSciNet  Google Scholar 

  20. Orsingher, E., Ricciuti, C., Toaldo, B.: On semi-Markov processes and their Kolmogorov’s integro-differential equations. J. Funct. Anal. 275(4), 830–868 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pillai, R.N.: On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 42(1), 157–161 (1990)

    Article  MathSciNet  Google Scholar 

  22. Polito, F., Scalas, E.: A generalization of the space-fractional Poisson process and its connection to some Lévy processes. Electron. Commun. Probab. 21, 1–14 (2016)

    Article  Google Scholar 

  23. Rach, R.: A convenient computational form for the Adomian polynomials. J. Math. Anal. Appl. 102, 415–419 (1984)

    Article  MathSciNet  Google Scholar 

  24. Rao, A., Garg, M., Kalla, S.L.: Caputo-type fractional derivative of a hypergeometric integral operator. Kuwait J. Sci. Eng. 37, 15–29 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Ricciuti, C., Toaldo, B.: Semi-Markov models and motion in heterogeneous media. J. Stat. Phys. 169, 340–361 (2017)

    Article  MathSciNet  Google Scholar 

  26. Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 11, 135–143 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Watanabe, S.: On discontinuous additive functionals and Lévy measures of a Markov process. Japan. J. Math. 34, 53–70 (1964)

    Article  Google Scholar 

  28. Zhu, Y., Chang, Q., Wu, S.: A new algorithm for calculating Adomian polynomials. Appl. Math. Comput. 169, 402–416 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vellaisamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kataria, K.K., Vellaisamy, P. (2019). Adomian Decomposition Method and Fractional Poisson Processes: A Survey. In: Daftardar-Gejji, V. (eds) Fractional Calculus and Fractional Differential Equations. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-9227-6_2

Download citation

Publish with us

Policies and ethics