Skip to main content

Abstract

The purpose of this chapter is to introduce in a fairly concise manner the key ideas underlying the field of unsupervised learning from the perspective of clustering for image segmentation tasks. We begin with a briefly review of fundamental concepts in clustering and a quick tour of its four basic models, namely, partitioning-based, hierarchical, density-based, and graph-based approaches. This is followed by a short introduction to distance measures and a brief review on performance evaluation metrics of clustering algorithms. This introduction is necessarily incomplete given the enormous range of topics under the rubric of clustering. The hope is to provide a tutorial-level view of the field so that many topics covered here can be delved more deeply into and state-of-the-art research will be touched upon in the next four chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., & Zimek, A. (2006a). Finding hierarchies of subspace clusters. In LNCS: Knowledge discovery in databases. Lecture notes in computer Science (Vol. 4213, pp. 446–453).

    Google Scholar 

  • Achtert, E., Böhm, C., & Kröger, P. (2006b). DeLi-Clu: Boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In LNCS: Advances in knowledge discovery and data mining. Lecture notes in computer science (Vol. 3918, pp. 119–128).

    Google Scholar 

  • Achtert, E., Böhm, C., Kröger, P., & Zimek, A. (2006c). Mining hierarchies of correlation clusters. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06) (Vol. 1, pp. 119–128).

    Google Scholar 

  • Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD/PODS’99) (pp. 49–60), PA,USA.

    Google Scholar 

  • Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms(SIAM’07) (pp. 1027–1035), Philadelphia, PA, USA.

    Google Scholar 

  • Bahmani, B., Moseley, B., Vattani, A., Kumar, R., & Vassilvitskii, S. (2012). Scalable K-means++. In Proceedings of the VLDB Endowment (PVLDB’12) (Vol. 5, no. 7, pp. 622–633).

    Google Scholar 

  • Bailey, K. (1994). Numerical taxonomy and cluster analysis. Typologies and Taxonomies, 34.

    Google Scholar 

  • Banerjee, A. (2004). Validating clusters using the Hopkins statistic. Proceedings of the IEEE International Conference on Fuzzy Systems, 1, 149–153.

    Google Scholar 

  • Cattell, R. B. (1943). The description of personality: Basic traits resolved into clusters. Journal of Abnormal and Social Psychology, 38(4), 476–506.

    Article  Google Scholar 

  • Cormen, T. T., Leiserson, C. E., & Rivest, R. L. (2009). Introduction to algorithms. Resonance, 1(9), 14–24.

    MATH  Google Scholar 

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.

    Google Scholar 

  • Defays, D. (1977). An efficient algorithm for a complete-link method. The Computer Journal, British Computer Society, 20(4), 364–366.

    MathSciNet  MATH  Google Scholar 

  • Ding, C. (2007). A tutorial on spectral clustering. Journal of Statistics and Computing, 17, 395–416.

    Article  MathSciNet  Google Scholar 

  • Donath, W. E., & Hoffman, A. J. (1973). Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 17, 420–425.

    Article  MathSciNet  Google Scholar 

  • Driver, H. E., & Kroeber, A. L. (1932). Quantitative expression of cultural relationships. University of California Publications in American Archaeology and Ethnology, 31, 211–256.

    Google Scholar 

  • Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A local-density based spatial clustering algorithm with noise. Information Systems, 32, 978–986.

    Google Scholar 

  • Dunn, J. (1974). Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4, 95–104.

    Article  MathSciNet  Google Scholar 

  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96) (pp. 226–231), Portland, OR, USA: AAAI Press.

    Google Scholar 

  • Estivill-Castro, V. (2002). Why so many clustering algorithms—A position paper. ACM SIGKDD Explorations Newsletter, 4(1), 65–75.

    Article  Google Scholar 

  • Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis. Chichester, West Sussex, U.K.: Wiley Ltd.

    Google Scholar 

  • Fowkles, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383), 553–569.

    Article  Google Scholar 

  • Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2–3), 107–145.

    Google Scholar 

  • Hinneburg, A., & Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. In Proceedings of 4th International Conference on Knowledge Discovery and Data Mining (KDD’98) (pp. 58–65), New York City, NY, USA.

    Google Scholar 

  • Hopkins, B., & Skellam, J. G. (1954). A new method for determining the type of distribution of plant individuals. Annals of Botany, 18(2), 213–227.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  Google Scholar 

  • Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547–579.

    Google Scholar 

  • Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11, 37–50.

    Article  Google Scholar 

  • Jia, H., Ding, S., Xu, X., & Nie, R. (2014). The latest research progress on spectral clustering. Neural Computing & Applications, 24, 1477–1486.

    Google Scholar 

  • Kriegel, H.-P., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. Data Mining and Knowledge Discovery, 1(3), 231–240.

    Article  MathSciNet  Google Scholar 

  • Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137.

    Article  MathSciNet  Google Scholar 

  • Meila, M., & Shi, J. (2001). A random walks view of spectral segmentation. In Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics (AISTATS’01).

    Google Scholar 

  • Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems (pp. 849–856).

    Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.

    Article  Google Scholar 

  • Rousseeuw, Peter J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  • Roweis, S. T., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–345.

    Article  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Sibson, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Journal. British Computer Society, 16(1), 30–34.

    MathSciNet  Google Scholar 

  • Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman and Company.

    MATH  Google Scholar 

  • Sokal, R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  • Tryon, R. C. (1939). Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality. Ann Arbor, MI: Edwards Brothers.

    Google Scholar 

  • Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, c-20, 68–86.

    Article  Google Scholar 

  • Zubin, J. (1938). A technique for measuring like-mindedness. The Journal of Abnormal and Social Psychology, 33(4), 508–516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Wang, X., Wilkes, D.M. (2020). Unsupervised Learning for Data Clustering Based Image Segmentation. In: Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-9217-7_4

Download citation

Publish with us

Policies and ethics