Skip to main content

Direction of Arrival (DOA) Estimation

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The importance of DOA estimation in radar processing for automotive applications cannot be overstated. It forms the third component of the radar cube: range, velocity, and angle. In practice, DOA estimation is often complicated by the fact that there will be multiple and unknown number of source signals impinging on the receiver array at the same time, with unknown amplitudes. Additionally, the received source signals are almost always corrupted by additive noise and clutter is present. Besides these challenges, we also have to deal with the multipath problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Trees, H.: Optimum Array Processing Part IV. Wiley-Interscience (2002)

    Google Scholar 

  2. Karim, H., Viberg, M.: Two decades of array signal processing research. IEEE Sign. Process. Mag. pp. 67–94 (July 1996)

    Google Scholar 

  3. Gupta, P., Aditya, K., Datta, A.: Comparison of conventional and subspace based algorithms to estimate Direction of Arrival (DOA). In: 2016 International Conference on Communication and Signal Processing (ICCSP) (6–8 April 2016)

    Google Scholar 

  4. Cho S., et al.: A new direction-of-arrival estimation method using automotive radar sensor arrays. Int. J. Distrib. Sens. Netw. 13(6), 1–12 (June 2017)

    Article  Google Scholar 

  5. Van Veen, B.D., Buckley, K.M.: Beamforming-A versatile approach to spatial filtering. IEEE ASSP Mag. pp. 4–24 (April 1988)

    Google Scholar 

  6. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 57, 1408–1418 (1969)

    Article  Google Scholar 

  7. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  9. Forsythe, K.W.: Utilizing waveform features for adaptive beamforming and direction finding with narrowband signals. Lincoln Lab. J. 10(2), 99–126 (1997)

    Google Scholar 

  10. Roy, R., Kailath, T.: ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust Speech Sign. Process. 37, 984–995 (1989)

    Article  Google Scholar 

  11. Shan, T.J., Wax, M., Kailath, T.: On spatial smoothing for direction-of-arrival estimation of coherent sources. IEEE Trans. Acoust. Speech Sign. Process. 33(4), 806–811 (August 1985)

    Google Scholar 

  12. Pillai, U., Kwon, B.H.: Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Sign. Process. 37(1), 8–15 (January 1989)

    Article  Google Scholar 

  13. Munier, J., Delisle, G.Y.: Spatial analysis using new properties of the cross-spectral matrix. IEEE Trans. Sig. Process 39(3), 746–749 (1991)

    Article  Google Scholar 

  14. Marcos, S., Marsal, A., Benidir, M.: The propagator method for source bearing estimation. Sig. Process. 42(2), 121–138 (1995)

    Article  Google Scholar 

  15. Tufts, D.W., Kumaresan, R.: Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE 70, 975–989 (1982)

    Article  Google Scholar 

  16. Kay, S.M.: Modern Spectral Estimation: Theory and Application. Prentice Hall, Englewood Cliffs, NJ (1988)

    Google Scholar 

  17. Gamba, J.: On Noise-Compensated Techniques for Time Delay Estimation. Ph.D. Thesis (2005)

    Google Scholar 

  18. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  19. Paulraj, A., Ottersten, B., Roy, R., Swindlehurst, A., Xu, G., Kailath, T.: Subspace methods for directions-of-arrival estimation. In: Bose, N.K., Rao, C.R. (eds.) Handbook of Statistics, vol. 10, pp. 693–739. Elsevier Science Publishers B.V. (1993)

    Google Scholar 

  20. Viberg, M., Ottersten, B.: Sensor array processing based on subspace fitting. IEEE Trans. Sign. Process. 39, 1110–1121 (May 1991)

    Article  Google Scholar 

  21. Chen, C.-Y., Vaidyanathan, P.P.: Minimum redundancy MIMO radars. In: 2008 IEEE International Symposium on Circuits and Systems, pp. 45–48 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonah Gamba .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gamba, J. (2020). Direction of Arrival (DOA) Estimation. In: Radar Signal Processing for Autonomous Driving. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9193-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9193-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9192-7

  • Online ISBN: 978-981-13-9193-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics