Skip to main content

A Review on Utilizing Bio-Mimetics in Solving Localization Problem in Wireless Sensor Networks

  • Conference paper
  • First Online:
  • 975 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1037))

Abstract

Wireless Sensor Networks (WSNs) have the feasibility to connect the physical world with the virtual world by framing a network of sensors. The supreme function of a sensor network is to collect and forward data to the destination. Applications based on WSNs needs location knowledge about randomly deployed nodes. Localization of these nodes is the basic problem in WSNs. Several types of research have been done so far, using various strategies to improve the network performance as well as energy efficiency and communications effectiveness of WSNs. Among the strategies used, algorithms inspired by natural behaviours of a group of organisms like butterflies, fireflies, grey wolf, etc., showed higher efficiency in locating the nodes. In this survey, some of the inherent nature inspired localization algorithms are briefly discussed. Also, some other collective behaviours which can be used to develop localization algorithms are also explained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kumar, A., Shwe, H.Y., Wong, K.J., Chong, P.H.J.: Location-based routing protocols for wireless sensor networks: A survey. Wireless Sens. Netw. 9, 25–72 (2017)

    Article  Google Scholar 

  2. Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput, Appl. 60, 192–219 (2016)

    Article  Google Scholar 

  3. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Corral, N.S.: Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Sig. Process. Mag. 22, 54–69 (2005)

    Article  Google Scholar 

  4. Chong, C.-Y., Kumar, S.P.: Sensor networks: Evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2013)

    Article  Google Scholar 

  5. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: A survey on recent developments and potential synergies. J. Super Comput. 68(1), 353–393 (2014)

    Google Scholar 

  6. Kuriakose, J., Joshi, S., Vikram Raju, R., Kilaru, A.: A review on localization in wireless sensor networks. In: Thampi, S.M., Gelbukh, A., Mukhopadhyay, J. (eds.) Advances in Signal Processing and Intelligent Recognition Systems. AISC, vol. 264, pp. 599–610. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04960-1_52

    Chapter  Google Scholar 

  7. Chaczko, Z., Klempous, R., Nikodem, J., Nikodem, M.: Methods of sensors localization in wireless sensor networks. In: IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, ECBS 2007, Tucson, AZ, pp. 26–29 (2007)

    Google Scholar 

  8. Kulkarni, R.V., Venayagamoorthy, G.K., Cheng, M.X.: Bio-inspired node localization in wireless sensor networks. In: IEEE International Conference on Systems, Man and Cybernetics, San Antonio, pp. 205–210 (2009)

    Google Scholar 

  9. Arora, S., Singh, S.: Node localization in wireless sensor networks using butterfly optimization algorithm. Arab. J. Sci. Eng. 42(8), 3325–3335 (2017)

    Article  Google Scholar 

  10. Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)

    Article  MATH  Google Scholar 

  11. Arora, S., Singh, S.: An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization. Int. J. Interact. Multimed. Artif. Intell 4(4), 14 (2017)

    Google Scholar 

  12. Arora, S., Singh, S.: An improved butterfly optimization algorithm for global optimization. Adv. Sci. Eng. Med. 8(9), 711–717 (2016)

    Article  Google Scholar 

  13. Arora, S., Singh, S., Yetilmezsoy, K.: A modified butterfly optimization algorithm for mechanical design optimization problems. J. Braz. Soc. Mech. Sci. Eng. 40(1), 21 (2018)

    Article  Google Scholar 

  14. Yang, X.-S.: Engineering Optimization An Introduction with Metaheuristic Applications. 2nd edn. John Wiley and Sons INC, Hoboken, New Jersey (2010)

    Google Scholar 

  15. Yang, X.-S., He, X.: Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)

    Article  Google Scholar 

  16. Gopakumar, A., Jacob, L.: Localization in wireless sensor networks using Particle Swarm Optimization. In: IET International Conference on Wireless Mobile and Multimedia Networks, Beijing, China, pp. 227–230 (2008)

    Google Scholar 

  17. Harikrishnan, R., Jawahar Senthil Kumar, V., Sridevi Ponmalar, P.: Firefly algorithm approach for localization in wireless sensor networks. In: Nagar, A., Mohapatra, D.P., Chaki, N. (eds.) Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics. SIST, vol. 44, pp. 209–214. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2529-4_21

    Chapter  Google Scholar 

  18. Bingnan, P., Zhang, H., Pei, T., Wang, H.: Firefly algorithm optimization based WSN localization algorithm. In: International Conference on Information and Communication Technologies, Xi’an, China, pp. 26–5 (2015)

    Google Scholar 

  19. Arora, S., Singh, S.: A conceptual comparison of firefly algorithm, bat algorithm, and cuckoo search. In: International Conference on Control Computing Communication and Materials (ICCCCM), Allahabad, India, pp. 1–4. IEEE (2013)

    Google Scholar 

  20. Goyal, S., Patterh, M.S.: Wireless sensor network localization based on BAT algorithm. Int. J. Emerg. Technol. Comput. Appl. Sci. 3(192), 507–512 (2013)

    Google Scholar 

  21. Yang, X.-S., He, X.: Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)

    Article  Google Scholar 

  22. Gandomi, A.H., Yang, X.S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rezaee Jordehi, A.: Chaotic bat swarm optimization (CBSO). Appln. Soft. Comput. 26, 523–530 (2015)

    Article  Google Scholar 

  24. Dao, T.-K., Pan, T.-S., Nguyen, T., Pan, J.-S.: Parallel bat algorithm for optimizing makespan in job scheduling problems. J. Intell. Manuf. 29(2), 451–462 (2015)

    Article  Google Scholar 

  25. Jayabarathi, T., Raghunathan, T., Gandomi, A.H.: The bat algorithm, variants and some practical engineering applications: A review. In: Yang, X.-S. (ed.) Nature-Inspired Algorithms and Applied Optimization. SCI, vol. 744, pp. 313–330. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67669-2_14

    Chapter  Google Scholar 

  26. Mihoubi, M., Rahmoun, A., Lorenz, P., Lasla, N.: An effective bat algorithm for node localization in a distributed wireless sensor network. Secur. Priv. 1(1), e7 (2018)

    Article  Google Scholar 

  27. Goyal, S., Patterh, M.S.: Modified bat algorithm for localization of wireless sensor network. Wireless Pers. Commun. 86(2), 657–670 (2016)

    Article  Google Scholar 

  28. Yılmaz, S., Ugur Kucuksille, E., Cengiz, Y.: Modified bat algorithm. Elektronika ir Elektrotechnika 20(2), 71–78 (2014)

    Article  Google Scholar 

  29. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE (2009)

    Google Scholar 

  30. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11(8), 5508–5518 (2011)

    Article  Google Scholar 

  31. Walton, S., Hassan, O., Morgan, K., Rowan Brown, M.: A review of the development and applications of the cuckoo search algorithm. In: Swarm Intelligence and Bio-Inspired Computation Theory and Applications, pp. 257–271 (2013)

    Chapter  Google Scholar 

  32. Walton, S., Hassan, O., Morgan, K., Rowan Brown, M.: Modified cuckoo search: A new gradient-free optimization algorithm chaos. Solitons and Fractals 44(9), 710–718 (2011)

    Google Scholar 

  33. Mareli, M., Tawla, B.: An adaptive Cuckoo search algorithm for optimization. Appl. Comput. Inf. 14(2), 107–115 (2018)

    Google Scholar 

  34. Marichelvam, M.K., Prabaharan, T., Yang, X.-S.: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl. Soft Comput. 19, 93–101 (2014)

    Article  Google Scholar 

  35. Marichelvam, M.K.: An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems. Int. J. Bio-Inspired Comput. 4(4), 200–205 (2012)

    Article  Google Scholar 

  36. Li, X., Yin, M.: A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem. Int. J. Prod. Res. 51(16), 4732–4754 (2013)

    Article  Google Scholar 

  37. Gherboudj, A., Layeb, A., Chikhi, S.: Solving 0–1 knapsack problems by a discrete binary version of the cuckoo search algorithm. Int. J. Bio-Inspired Comput. 4(4), 229–236 (2012)

    Article  Google Scholar 

  38. Valian, E., Mohanna, S., Tavakoli, S.: Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif. Intell. Appl. 2(3), 36–43 (2011)

    Google Scholar 

  39. Ouaarab, A., Ahiod., B., Yang, X.-S.: Discrete cuckoo search algorithm for the traveling salesman problem. Neural Computing and Applications 24(7-8), 1659–1669 (2014)

    Article  Google Scholar 

  40. Goyal, S., Patterh, M.S.: Wireless sensor network localization based on cuckoo search algorithm. Wireless Pers. Commun. 79(1), 223–234 (2014)

    Article  Google Scholar 

  41. Passino, K.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  42. Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177(18), 3918–3937 (2007)

    Article  Google Scholar 

  43. Sathya, P.D., Kayalvizhi, R.: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng. Appl. Artif. Intell. 24(4), 595–615 (2011)

    Article  Google Scholar 

  44. Dasgupta, S., Das, S., Biswas, A., Abraham, A.: Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Comput. 14(11), 1151–1164 (2011)

    Article  Google Scholar 

  45. Kulkarni, R.V., Ganesh Kumar, V.: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(6), 663–675 (2010)

    Article  Google Scholar 

  46. Meng, X., Liu, Y., Gao, X., Zhang, H.: A new bio-inspired algorithm: Chicken swarm optimization. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014. LNCS, vol. 8794, pp. 86–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11857-4_10

    Chapter  Google Scholar 

  47. Wu, D., Kong, F., Gao, W., Shen, Y., Ji, Z.: Improved chicken swarm optimization. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, pp. 681–686. IEEE (2015)

    Google Scholar 

  48. Chen, Y.L., He, P.L., Zhang, Y.H.: Combining penalty function with modified chicken swarm optimization for constrained optimization. Adv. Intell. Syst. Res. 126, 1899–1907 (2015)

    Google Scholar 

  49. Al Shayokh, M., Shin, S.Y.: Bio-inspired distributed WSN localization based on chicken swarm optimization. Wireless Pers. Commun. 97(4), 5691–5706 (2017)

    Article  Google Scholar 

  50. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  51. Jitkongchuen, D., Phaidang, P., Pongtawevirat, P.: Grey wolf optimization algorithm with invasion-based migration operation. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, pp. 1–5. IEEE (2016)

    Google Scholar 

  52. Rajakumar, R., Amudhavel, J., Dhavachelvan, P., Vengattaraman, T.: GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. J. Comput. Netw. Commun. (2017)

    Google Scholar 

  53. Chen, G.-C., Yu, J.-S.: Particle swarm optimization algorithm. Inf. Cont.-Shenyang 34, 318 (2005)

    Google Scholar 

  54. Schmickl, T., Crailsheim, K.: A navigation algorithm for swarm robotics inspired by slime mold aggregation. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 1–13. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71541-2_1

    Chapter  Google Scholar 

  55. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube Morphogenesis in an amoeboid organism. Biophys. Chem. 92(1), 47–52 (2001)

    Article  Google Scholar 

  56. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  57. Li, K., Torres, C.E., Thomas, K., Rossi, L.F., Shen, C.C.: Slime mold inspired routing protocols for wireless sensor networks. Swarm Intell. 5(3–4), 183–223 (2011)

    Article  Google Scholar 

  58. Conradt, L., Roper, T.J.: Consensus decision making in animals. Trends Ecol. Evol. 20(8), 449–456 (2005)

    Article  Google Scholar 

  59. Pitman, R.L., Durban, J.W.: Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, Antarctic Peninsula waters. Marine Mammal Sci. 28(1), 16–36 (2012)

    Article  Google Scholar 

  60. Visser, I.N., Smith, T.G., Bullock, I.D., Green, G.D., Carlsson, O.G.L., Imberti, S.: Antarctic peninsula killer whales (Orcinus orca) hunt seals and a penguin on floating ice. Marine Mammal Sci. 24(1), 225–234 (2008)

    Article  Google Scholar 

  61. Tarpy, D.R., Gilley, D.C., Seeley, T.D.: Levels of selection in a social insect: A review of conflict and cooperation during honey bee (Apis mellifera) queen replacement. Behav. Ecol. Sociobiol. 55(6), 513–523 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shanmugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malar, R.I., Shanmugam, M. (2019). A Review on Utilizing Bio-Mimetics in Solving Localization Problem in Wireless Sensor Networks. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1037. Springer, Singapore. https://doi.org/10.1007/978-981-13-9187-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9187-3_66

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9186-6

  • Online ISBN: 978-981-13-9187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics