Effect of Time on Aluminium Oxide FESEM Nanopore Images Using Fuzzy Inference System

  • Parashuram Bannigidad
  • Jalaja UdoshiEmail author
  • C. C. Vidyasagar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1037)


The applications in nanotechnology require customized nanopore membrane. The structure and number of nanopore on the oxidized metal template rely upon the anodizing parameters used in the electro-chemical cell during the nanopore synthesis. The fundamental idea of this paper is to develop an automated system to quantify the effect of time on aluminum nanopore through advanced minuscule FESEM images. The test results foresee that, the increase in anodization time results in gradual increment in porosity and pore size estimating from 0.234% to 2.034% and 32 nm to 78 nm respectively and shrinking in nanopore wall thickness from 58 nm to 41 nm. The anticipated after effects of the following conceivable development of aluminum nanopore size and wall thickness are processed by applying factual investigation (statistical analysis) and building the principles of fuzzy inference system. The manual and test results are compared, analyzed and deciphered to exhibit the competence of the proposed technique.


AAO Nanopore Nanomaterial Digital image analysis Fuzzy FIS FESEM 


  1. 1.
    Victor, V., et al.: Unveiling the hard anodization regime of aluminum: insight into the nanopore self-organization and growth mechanism. ACS Appl. Mater. Interfaces 7(51), 28682–28692 (2015)CrossRefGoogle Scholar
  2. 2.
    Santos, A., Macías, G., Ferre-Borrull, J., Pallare, S.J., Marsal, L.F.: Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl. Mater. Interfaces 4(7), 3584–3588 (2012)CrossRefGoogle Scholar
  3. 3.
    Kumeria, T., Rahman, M.M., Santos, A., Ferre-Borrull, J., Marsal, L.F., Losic, D.: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems. ACS Appl. Mater. Interfaces 6(15), 12971–12978 (2014)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., et al.: Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications. ACS Appl. Mater. Interfaces 7(35), 19816–19824 (2015)CrossRefGoogle Scholar
  5. 5.
    Romero, V., et al.: Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interfaces 5(9), 3556–3564 (2013)CrossRefGoogle Scholar
  6. 6.
    Law, C.S., Santos, A., Kumeria, T., Losic, D.: Engineered therapeutic-releasing nanoporous anodic alumina-aluminum wires with extended release of therapeutics. ACS Appl. Mater. Interfaces 7(6), 3846–3853 (2015)CrossRefGoogle Scholar
  7. 7.
    Vengatesh, P., Kulandainathan, M.A.: Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 7(5), 1516–1526 (2015)CrossRefGoogle Scholar
  8. 8.
    Munoz, R.M., Grauby, S., Rampnoux, J.M., Caballero-Calero, O., Martin-Gonzalez, M., Dilhaire, S.: Fabrication of Bi\(_2\)Te\(_3\) nanowire arrays and thermal conductivity measurement by 3\(\omega \)-scanning thermal microscopy. J. Appl. Phys. 113, 054308 (2013). Scholar
  9. 9.
    Bohnert, T., Vega, V., Michel, A.K., Prida, V.M., Nielsch, K.: Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013). Scholar
  10. 10.
    Dudem, B., Ko, Y.H., Leem, J.W., Lee, S.H., Yu, J.S.: Highly transparent and flexible triboelectric nanogenerators with sub-wavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 7(37), 20520–20529 (2015)CrossRefGoogle Scholar
  11. 11.
    Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B., Rubloff, G.W.: Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)CrossRefGoogle Scholar
  12. 12.
    Liang, Y., et al.: Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. Am. Chem. Soc. 132(42), 15030–15037 (2010)CrossRefGoogle Scholar
  13. 13.
    Min, H.L., et al.: Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 3425–3430 (2011)CrossRefGoogle Scholar
  14. 14.
    Shwetabh, S.: Microscopic image analysis of nanoparticles by edge detection using ant colony optimization. J. Comput. Eng. 11(3), 84–89 (2013)Google Scholar
  15. 15.
    Bannigidad, P., Vidyasagar, C.C.: Effect of time on anodized \(Al_{2}O_{3}\) nanopore FESEM images using digital image processing techniques: a study on computational chemistry. IJETTCS 4(3), 15–22 (2015). ISSN 2278–6856Google Scholar
  16. 16.
    Muneesawang, P., Sirisathitkul, C.: Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16, 58 (2015)Google Scholar
  17. 17.
    De, S., Biswas, N., Sanyal, A., Ray, P., Datta, A.: Detecting subsurface circular objects from low contrast noisy images: applications in microscope image enhancement. World Acad. Sci. Eng. 67, 1317–1323 (2012)Google Scholar
  18. 18.
    Vidyasagar, C.C., Bannigidad, P., Muralidhara, H.B.: Influence of anodizing time on porosity of nanopore structures grown on flexible TLC aluminium films and analysis of images using MATLAB software. Adv. Mater. Lett. 7(1), 71–77 (2016)CrossRefGoogle Scholar
  19. 19.
    Hiremath, P.S., Bannigidad, P.: Digital microscopic bacterial cell growth analysis and cell division time determination for escherichia coli using fuzzy inference system. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 207–215. Springer, Heidelberg (2012). Scholar
  20. 20.
    Belwalkar, A., Grasing, E., Van Geertruyden, W., Huang, Z., Misiolek, W.Z.: Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Memb. Sci. 319, 192–198 (2008)CrossRefGoogle Scholar
  21. 21.
    Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)CrossRefGoogle Scholar
  22. 22.
    Santosh, K.C., Roy, P.P.: Arrow detection in biomedical images using sequential classifier. Int. J. Mach. Learn. Cybern. 9(6), 993–1006 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Parashuram Bannigidad
    • 1
  • Jalaja Udoshi
    • 1
    Email author
  • C. C. Vidyasagar
    • 2
  1. 1.Department of Computer ScienceRani Channamma UniversityBelagaviIndia
  2. 2.Department of ChemistryRani Channamma UniversityBelagaviIndia

Personalised recommendations