Oxidative P-C Couplings and Related Reactions



The oxidative P-C coupling is a special method for the preparation of phosphinoylated substrates. This reaction was utilized to make available a wide range of compounds, including N-, P- and O-heterocycles and is expected to spread in the future. In this chapter, we give an overview of this relatively new approach to reveal the potential of the oxidative P-C coupling serving as a “green” method. The oxidative approach was regarded in a broader sense.


Oxidative P-C couplings Secondary phosphine oxides Tertiary phosphine oxides Cascades dehydrogenative cyclizations Heterocycles cascades Heterocycles 


  1. 1.
    “From C–H to C–C bonds: Cross dehydrogenative coupling” (Part 26. of the “RSC Green Chemistry” series) ed. C.-J. Li, Royal Society of Chemistry, Cambridge, UK, 2015Google Scholar
  2. 2.
    Hirao T, Masunaga T, Ohshiro Y, Agawa T (1980) Tetrahedron Lett 21:3595Google Scholar
  3. 3.
    Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T (1982) Bull Chem Soc Jpn 55:909Google Scholar
  4. 4.
    Jablonkai E, Keglevich G (2014) Curr Org Synth 11:429Google Scholar
  5. 5.
    Jablonkai E, Keglevich G (2015) Curr Green Chem 2:379Google Scholar
  6. 6.
    Henyecz R, Keglevich G (2019) Curr Org Synth 16:523Google Scholar
  7. 7.
    Henyecz R, Keglevich G (2018) P-C couplings by the Hirao reaction pp. 158–178. In: Keglevich G (szerk.) Organophosphorus chemistry: novel developments. Németország/Walter de Gruyter, Berlin/Boston, p 315Google Scholar
  8. 8.
    Trofimov BA, Volkov PA, Khrapova KO, Telezhkin AA, Ivanova NI, Albanov AI, Gusarovaa NK, Chupakhin ON (2018) Chem Commun 54:3371CrossRefGoogle Scholar
  9. 9.
    Yuan T, Huang S, Cai C, Lu G (2018) Org Biomol Chem 16:30CrossRefGoogle Scholar
  10. 10.
    Feng C-G, Ye M, Xiao K-J, Li S, Yu J-Q (2013) J Am Chem Soc 135:9322CrossRefGoogle Scholar
  11. 11.
    Xie J, Li H, Xue Q, Cheng Y, Zhu C (2012) Adv Synth Catal 354:1646CrossRefGoogle Scholar
  12. 12.
    Gao M, Li Y, Xie L, Chauvin R, Cui X (2016) Chem Commun 52:2846CrossRefGoogle Scholar
  13. 13.
    Luo K, Chen Y-Z, Chen L-X, Wu L (2016) J Org Chem 81:4682CrossRefGoogle Scholar
  14. 14.
    Zhang H-J, Lin W, Wu Z, Ruan W, Wen T-B (2015) Chem Commun 51:3450CrossRefGoogle Scholar
  15. 15.
    Singsardar M, Dey A, Sarkar R, Hajra A (2018) J Org Chem 83:12694CrossRefGoogle Scholar
  16. 16.
    Li L, Wang J-J, Wang G-W (2016) J Org Chem 81:5433CrossRefGoogle Scholar
  17. 17.
    Lin W, Su F, Zhang H-J, Wen T-B (2017) Eur J Org Chem 2017:1757Google Scholar
  18. 18.
    Liu Y, Liu Z, Zhang Y, Xiong C (2018) Adv Synth Catal 360:3492CrossRefGoogle Scholar
  19. 19.
    Müller P, Fuhr O, Döring M (2013) Heteroatom Chem 22:252CrossRefGoogle Scholar
  20. 20.
    Wang G-W, Wang C-Z, Zou J-P (2011) J Org Chem 76:6088CrossRefGoogle Scholar
  21. 21.
    Chang Y-C, Yuan P-T, Hong F-E (2017) Eur J Org Chem 2017:2441Google Scholar
  22. 22.
    Kuninobu Y, Yoshida T, Takai K (2011) J Org Chem 76:7370CrossRefGoogle Scholar
  23. 23.
    Furukawa S, Haga S, Kobayashi J, Kawashima T (2014) Org Lett 16:3228CrossRefGoogle Scholar
  24. 24.
    Unoh Y, Hirano K, Satoh T, Miura M (2013) Angew Chem Int Ed 52:12975CrossRefGoogle Scholar
  25. 25.
    Ma W, Ackermann L (2014) Synthesis 46:2297CrossRefGoogle Scholar
  26. 26.
    Chen Y-R, Duan W-L (2013) J Am Chem Soc 135:16754CrossRefGoogle Scholar
  27. 27.
    Zhang P, Gao Y, Zhang L, Li Z, Liu Y, Tang G, Zhao Y (2016) Adv Synth Catal 358:138CrossRefGoogle Scholar
  28. 28.
    Ma D, Chen W, Hu G, Zhang Y, Gao Y, Yin Y, Zhao Y (2016) Green Chem 18:3522CrossRefGoogle Scholar
  29. 29.
    Quint V, Morlet-Savary F, Lohier J-F, Lalevée J, Gaumont A-C, Lakhdar S (2016) J Am Chem Soc 138:7436CrossRefGoogle Scholar
  30. 30.
    Hu G, Zhang Y, Su J, Li Z, Gao Y, Zhao Y (2015) Org Biomol Chem 13:8221CrossRefGoogle Scholar
  31. 31.
    Li J, Zhang W-W, Wei X-J, Hao W-J, Li G, Tu S-J, Jiang B (2017) Org Lett 19:4512CrossRefGoogle Scholar
  32. 32.
    Li Y, Qiu G, Ding Q, Wu J (2014) Tetrahedron 70:4652CrossRefGoogle Scholar
  33. 33.
    Cao J-J, Zhu T-H, Gu Z-Y, Hao W-J, Wang S-Y, Ji S-J (2014) Tetrahedron 70:6985CrossRefGoogle Scholar
  34. 34.
    Zhang H, Gu Z, Li Z, Pan C, Li W, Hu H, Zhu C (2016) J Org Chem 81:2122CrossRefGoogle Scholar
  35. 35.
    Zhang P, Zhang L, Gao Y, Tang G, Zhao Y (2016) RSC Adv. 6:60922CrossRefGoogle Scholar
  36. 36.
    Chen S, Zhang P, Shu W, Gao Y, Tang G, Zhao Y (2016) Org Lett 18:5712CrossRefGoogle Scholar
  37. 37.
    Zheng J, Zhang Y, Wang D, Cui S (2016) Org Lett 18:1768CrossRefGoogle Scholar
  38. 38.
    Zhang H, Li W, Zhu C (2017) J Org Chem 82:2199CrossRefGoogle Scholar
  39. 39.
    Liu JM, Zhao SS, Song WW, Li R, Guo XY, Zhuo KL, Yue YY (2017) Adv Synth Catal 359:609CrossRefGoogle Scholar
  40. 40.
    Xu J, Yu X, Song Q (2017) Org Lett 19:980CrossRefGoogle Scholar
  41. 41.
    Hua H-L, Zhang B-S, He Y-T, Qiu Y-F, Wu X-X, Xu P-F, Liang Y (2016) Org Lett 18:216CrossRefGoogle Scholar
  42. 42.
    Li X-S, Han Y-P, Zhu X-Y, Li M, Wei W-X, Liang Y-M (2017) J Org Chem 82:11636CrossRefGoogle Scholar
  43. 43.
    Sun J, Qiu J-K, Wu Y-N, Hao W-J, Guo C, Li G, Tu S-J, Jiang B (2017) Org Lett 19:754CrossRefGoogle Scholar
  44. 44.
    Zhou Z-Z, Jin D-P, Li L-H, He Y-T, Zhou P-X, Yan X-B, Liu X-Y, Liang Y-M (2014) Org Lett 16:5616CrossRefGoogle Scholar
  45. 45.
    Unoh Y, Hirano K, Miura M (2017) J Am Chem Soc 139:6106CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations