Advertisement

Synthesis and Functionalization of N-Heterocycles Using Transition Metal-Free Cross-Dehydrogenative Coupling (CDC) Approaches

Chapter
  • 399 Downloads

Abstract

The creation of carbon–carbon bonds for the construction or the post-functionalization of various N-heterocycles is one of the most active research areas in organic chemistry. Among those approaches, cross-dehydrogenative coupling (CDC) processes in the front line because of its simple, practical applicability in organic synthesis. Historically discovered in the presence of transition metal catalysts, this decade witnessed great progress in the metal-free CDC approaches, thus improving the sustainability of this transformation. This chapter aims at providing an update on selected examples of the metal-free approaches toward the access to various N-heterocycles. The first part deals with the synthesis of N-heterocycles by metal-free CDC approaches in the presence of stoichiometric or catalytic amount of oxidants, whereas the second part is focused on the last stage C–H bond functionalization of N-heterocycles via CDC process.

Keywords

Functionalization of amines Oxidant Metal-free approaches 

Abbreviations

[bpy]I

1-Butylpyridinium iodide

2-tert-Bu-AQN

2-tert-Butylanthraquinone

BPO

Benzoyl peroxide

DCP

Dicumyl peroxide

DDQ

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DTBP

Di-tert-butyl peroxide

IL

Ionic liquids

KHMDS

Potassium hexamethyldisilazide

mCPBA

meta-Chloroperoxybenzoic acid

NBS

N-Bromosuccinimide

NHS

N-Hydroxysuccinimide

NIS

N-Iodosuccinimide

PIDA

(Diacetoxyiodo)benzene

PIFA

[Bis(trifluoroacetoxy)iodo]benzene

TBAB

Tetrabutylammonium bromide

TBAI

Tetrabutylammonium iodide

TBHP

tert-Butyl hydroperoxide

TEMPO

(2,2,6,6-Tetramethylpiperidin-1-yl)oxidanyl

TFA

Trifluoroacetic acid

References

  1. 1.
    (a) Yang L, Huang H (2015) Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. Chem Rev 115:3468–3517. (b) Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y (2015) Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org Chem Front 2:1107–1295. (c) Huang C-Y, Doyle AG (2014) The chemistry of transition metals with three-membered ring heterocycles. Chem Rev 114:8153–8198. (d) Yu J-Q, Shi Z (2009) C–H activation. Springer-Verlag, Berlin, Heidelberg, 2009. (e) Murahashi S-I, Zhang D (2008) Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem Soc Rev 37:1490–1501. (f) Li C-J (2009) Cross-dehydrogenativecoupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42(2):335–344Google Scholar
  2. 2.
    (a) Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681–703. (b) Guillena G, Ramón DJ, Yus M (2010) Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem Rev 110:1611–1641. (c) Batra A, Singh P, Singh KN (2016) Cross dehydrogenative coupling (CDC) reactions of N,N-disubstituted formamides, benzaldehydes and cycloalkanes. Eur J Org Chem 4927–4947Google Scholar
  3. 3.
    (a) Wang B, Wong HNC (2018) Bromine-mediated cross-dehydrogenative coupling (CDC) reactions. Bull Chem Soc Jpn 91:710–719. (b) Parvatkar PT, Manetsch R, Banik BK (2019) Metal-free cross-dehydrogenative coupling (CDC): molecular iodine as a versatile catalyst/reagent for CDC reactions. Chem Asian J 14:6–30. (c) Li C-J (2015) From C–H to C–C bonds cross-dehydrogenative-coupling. The Royal Society of Chemistry, LondonGoogle Scholar
  4. 4.
    Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 57:10257–10274PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    (a) Donald JR, Taylor RJK, Petersen WF (2017) Low-temperature, transition-metal-free cross-dehydrogenative coupling protocol for the synthesis of 3,3-disubstituted oxindoles. J Org Chem 82:11288–11294; (b) Gosh S, De S, Kakde BN, Bhunia S, Adhikary A, Bisai A (2012) Intramolecular dehydrogenative coupling of sp2 C–H and sp3 C–H bonds: an expeditious route to 2-oxindoles. Org Lett 14:5864–5867Google Scholar
  6. 6.
    He Z, Liu W, Li Z (2011) I2-catalyzed indole formation via oxidative cyclization of N-aryl enamines. Chem Asian J 6:1340–1343PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Volvoikar PS, Tilve SG (2016) Iodine-mediated intramolecular dehydrogenative coupling: Synthesis of N-alkylindolo[3,2-c]- and -[2,3-c]quinoline iodides. Org Lett 18:892–895PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    He Y, Wang X, Xiao J-A, Pang J, Gan C, Huang Y, Huang C (2018) Metal-free oxidative isocyanides insertion with aromatic aldehydes to aroylated N-heterocycles. RSC Adv 8:3036–3040CrossRefGoogle Scholar
  9. 9.
    Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K (2014) PhI(OAc)2-mediated intramolecular oxidative aryl-aldehyde Csp2–Csp2 bond formation: metal-free synthesis of acridone derivatives. J Org Chem 79:7451–7458PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    (a) Deb ML, Baruah B, Bhuyan PJ (2008) A facile synthesis of 6,12-disubstituted 5,7-dihydroindolo[2,3-b]carbazoles from the reaction of 1H-Indole and aldehydes catalyzed by molecular iodine. Synthesis 0286–0292; (b) Xue W-J, Gao Q-H, Wub A-X (2015) Molecular iodine mediated oxidative cross-coupling of sp3 C–H with sp2 C–H: direct synthesis of substituted indolo[2,3-b]carbazoles via formal [2 + 2 + 1 + 1] cyclization. Tetrahedron Lett 56:7115–7119Google Scholar
  11. 11.
    Jiang Y-T, Yu Z-Z, Zhang Y-K, Wang B (2018) N-bromosuccinimide-induced C–H bond functionalization: An intramolecular cycloaromatization of electron withdrawing group substituted 1-biphenyl-2-ylethanone for the synthesis of 10-phenanthrenol. Org Lett 20:3728–3731PubMedCrossRefGoogle Scholar
  12. 12.
    Shang S, Zhang-Negrerie D, Du Y, Zhao K (2014) Intramolecular metal-free oxidative aryl–aryl coupling: an unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew Chem Int Ed 53:6216–6219CrossRefGoogle Scholar
  13. 13.
    Maiti S, Achar TK, Mal P (2017) An organic intermolecular dehydrogenative annulation reaction. Org Lett 19:2006–2009PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Maiti S, Mal P (2017) Dehydrogenative aromatic ring fusion for carbazole synthesis via C–C/C–N bond formation and alkyl migration. Org Lett 19:2454–2457PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Long J, Cao X, Zhu L, Qiu R, Au C-T, Yin S-F, Iwasaki T, Kambe N (2017) Intramolecular, site-selective, iodine-mediated, amination of unactivated (sp3)C–H bonds for the synthesis of indoline derivatives. Org Lett 19:2793–2796PubMedCrossRefGoogle Scholar
  16. 16.
    Satish G, Polu A, Ramar T, Ilangovan A (2015) Iodine-mediated C–H functionalization of sp, sp2, and sp3 carbon: a unified multisubstrate domino approach for isatin synthesis. J Org Chem 80:5167–5175PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Xu H, Xing M, Huang F, Jia J, Gao J (2015) Iodine-promoted construction of polysubstituted 2,3- dihydropyrroles from chalcones and β–enamine ketones (esters). Org Lett 17:3690–3693PubMedCrossRefGoogle Scholar
  18. 18.
    Ohno M, Spande TF, Witkop B (1970) Cyclization of tryptophan and tryptamine derivatives to 2,3-dihydropyrrolo [2,3-b]indole. J Am Chem Soc 92:343–348PubMedCrossRefGoogle Scholar
  19. 19.
    Yang Z-Y, Tian T, Du Y-F, Li S-Y, Chu C-C, Chen L-Y, Li D, Liub J-Y, Wang B (2017) Direct intramolecular amination of tryptophan esters to prepare pyrrolo[2,3-b]indoles. Chem Commun 53:8050–8053CrossRefGoogle Scholar
  20. 20.
    Gao Q, Wu X, Li Y, Liu S, Meng X, Wu A (2014) Iodine-promoted sequential C(sp3)-H functionalization reactions: an annulation strategy for the construction of 3-methylthio-4-arylmaleimides. Adv Synth Catal 356:2924–2930CrossRefGoogle Scholar
  21. 21.
    Huang H, Ji X, Wu W, Jiang H (2013) Practical synthesis of polysubstitutedimidazoles via iodine catalyzed aerobic oxidative cyclization of aryl ketones and benzylamines. Adv Synth Catal 355:170–180CrossRefGoogle Scholar
  22. 22.
    Chen Z, Li H, Dong W, Miao M, Ren H (2016) I2-catalyzed oxidative coupling reactions of hydrazones and amines and the application in the synthesis of 1,3,5-trisubstituted 1,2,4-triazoles. Org Lett 18:1334–1337PubMedCrossRefGoogle Scholar
  23. 23.
    Yang L, Zhang-Negrerie D, Zhao K, Du Y (2016) Intramolecular functionalization of benzylic methylene adjacent to the ring nitrogen atom in N-aryltetrahydroisoquinoline derivatives. J Org Chem 81:3372–3379PubMedCrossRefGoogle Scholar
  24. 24.
    Yan Y, Zhang Y, Feng C, Zha Z, Wang Z (2012) Selective iodine-catalyzed intermolecular oxidative amination of C(sp3)-H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew Chem Int Ed 51:8077–8081CrossRefGoogle Scholar
  25. 25.
    (a) Xi L-Y, Zhang R-Y, Shi L, Chen S-Y, Yu X-Q (2016) Iodine-mediated synthesis of 3-acylbenzothiadiazine 1,1-dioxides. Beilstein J Org Chem12:1072–1078. (b) Mohammed S, Vishwakarma R A, Bharate SB (2015) Iodine catalyzed oxidative synthesis of quinazolin-4(3H)-ones and Pyrazolo[4,3-d]pyrimidin-7(6H)-ones via Amination of sp3 C–H bond. J Org Chem 80:6915–6921Google Scholar
  26. 26.
    Yang L, Shi X, Hu B-Q, Wang L-X (2016) Iodine-catalyzed oxidative benzylic C-H bond amination of azaarenes: practical synthesis of quinazolin-4(3H)-ones. Asian J Org Chem 5:494–498CrossRefGoogle Scholar
  27. 27.
    Xicun W, Junlinga L, Zhengjuna Q, Linb B (2011) Molecular iodine promoted synthesis of new pyrido[2,3-d]pyrimidin-4-ols. Chin J Chem 29:1646–1650CrossRefGoogle Scholar
  28. 28.
    Ghorbani-Vaghei R, Malaekehpoor SM (2012) N-Bromosuccinimide as an efficient catalyst for the synthesis of indolo[2,3-b]quinolines. Tetrahedron Lett 53:4751–4753CrossRefGoogle Scholar
  29. 29.
    Nguyen TB, Ermolenko L, Retailleau P, Al-Mourabit A (2016) Molecular iodine-catalyzed aerobic α, β-diamination of cyclohexanones with 2-aminopyrimidine and 2-aminopyridines. Org Lett 18:2177–2179PubMedCrossRefGoogle Scholar
  30. 30.
    Rong H-J, Yao J-J, Li J-K, Qu J (2017) Molecular iodine-mediated α-C–H oxidation of pyrrolidines to N, O-acetals: synthesis of (±)-preussin by late-stage 2,5-difunctionalizations of pyrrolidine. J Org Chem 82:5557–5565PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Deb ML, Borpatra PJ, Saikiab PJ, Baruah PK (2017) Iodine/hydrogen peroxide promoted intramolecular oxidative C–O bond formation in ethanol at room temperature: a green approach to 1,3-oxazines. Synlett 28:461–466CrossRefGoogle Scholar
  32. 32.
    Liu L, Du L, Zhang-Negrerie D, Du Y (2015) NIS-mediated intramolecular oxidative α-functionalization of tertiary amines: Transition metal-free synthesis of 1,2-dihydro-(4H)-3,1-benzoxazin-4-one derivatives. RSC Adv 5:29774–29781CrossRefGoogle Scholar
  33. 33.
    Waghmode NA, Kalbandhe AH, Thorat PB, Karade NN (2016) Metal-free new synthesis of 1,3-naphthoxazines via intramolecular cross dehydrogenative-coupling reaction of 1-(a-aminoalkyl)-2-naphthols using hypervalent iodine(III) reagent. Tetrahedron Lett 57:680–683CrossRefGoogle Scholar
  34. 34.
    Zhao J, Huang H, Wu W, Chen H, Jiang H (2013) Metal-free synthesis of 2-aminobenzothiazoles via aerobic oxidative cyclization/dehydrogenation of cyclohexanones and thioureas. Org Lett 15:2604–2607PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Xu Y, Li B, Zhang X, Fan X (2017) Metal-free synthesis of 2-aminobenzothiazoles via iodine-catalyzed and oxygen-promoted cascade reactions of isothiocyanatobenzenes with amines. J Org Chem 82:9637–9646PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Xue W-J, Li H-Z, Zheng K-l, Wu A-X (2014) Iodine-promoted efficient synthesis of diheteroaryl thioethers via the integration of iodination/condensation/cyclization/dehydration sequences. Tetrahedron Lett 55:5544–5547CrossRefGoogle Scholar
  37. 37.
    Yu H, Shen J (2015) Dehydrogenative cyclization of N-acyl dipeptide esters for the synthesis of imidazolidin-4-ones. RSC Adv 5:9815–9818CrossRefGoogle Scholar
  38. 38.
    Verma A, Patel S, Meenakshi Kumar A, Yadav A, Kumar S, Jana S, Sharma S, Prasad CD, Kumar S (2015) Transition metal free intramolecular selective oxidative C(sp3)–N coupling: synthesis of N-aryl-isoindolinones from 2-alkylbenzamides. Chem Commun 51:1371–1374CrossRefGoogle Scholar
  39. 39.
    Wang L, Cao J, Chen Q, He M (2015) One-pot synthesis of 2,5-diaryl 1,3,4-oxadiazoles via di-tert-butyl peroxide promoted N-acylation of aryl tetrazoles with aldehydes. J Org Chem 80:4743–4748PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zhao D, Wang T, Li J-X (2014) Metal-free oxidative synthesis of quinazolinones via dual amination of sp3 C-H bonds. Chem Commun 50:6471–6474CrossRefGoogle Scholar
  41. 41.
    Wu X, Chen D-F, Chen S-S, Zhu Y-F (2015) Synthesis of polycyclic amines through mild metal-free tandem cross-dehydrogenative coupling/intramolecular hydroarylation of N-aryltetrahydroisoquinolines and crotonaldehyde. Eur J Org Chem 468–473CrossRefGoogle Scholar
  42. 42.
    Hu W, Lin J-P, Song L-R, Long Y-Q (2015) Direct synthesis of 2-aryl-4-quinolones via transition-metal-free intramolecular oxidative C(sp3)–H/C(sp3)–H coupling. Org Lett 17:1268–1271PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Li H, Liu C, Zhang Y, Sun Y, Wang B, Liu W (2015) Green method for the synthesis of chromeno[2,3-c]pyrazol-4(1H)-ones through ionic liquid promoted directed annulation of 5-(aryloxy)-1H-pyrazole-4-carbaldehydes in aqueous media. Org Lett 17:932–935PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Liang D, Sersen D, Yang C, Deschamps JR, Imler GH, Jiang C, Xue F (2017) One-pot sequential reaction to 2-substitutedphenanthridinones from N-methoxybenzamides. Org Biomol Chem 15:4390–4398PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Neel AJ, Hehn JP, Tripet PF, Toste FD (2013) Asymmetric cross-dehydrogenative coupling enabled by the design and application of chiral triazole-containing phosphoric acids. J Am Chem Soc 135:14044–14047PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yi C, Liu S-X, Neels A, Renaud P, Decurtins S (2009) Preparation of zwitterionic hydroquinone-fused [1,4]oxazinium derivatives via a photoinduced intramolecular dehydrogenative-coupling reaction. Org Lett 11:5530–5533PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang H, Muñiz K (2017) Selective piperidine synthesis exploiting iodine-catalyzed Csp3−H amination under visible light. ACS Catal 7:4122–4125CrossRefGoogle Scholar
  48. 48.
    (a) Hari DP, König B (2011) Eosin Y catalyzed visible light oxidative C–C and C–P bond formation. Org Lett 13:3852–3855. (b) Pan Y, Wee CW, Chen L, Tan C–H (2010) Dehydrogenative coupling reactions catalyzed by Rose Bengal using visible light irradiation. Green Chem 13:2682–2685. (c) Rueping M, Vila C, Bootwicha T (2013) Continuous flow organocatalytic C–H functionalization and crossdehydrogenative coupling reactions: visible light organophotocatalysis for multicomponent reactions and C–C, C–P bond formations. ACS Catal 3:1676–1680. (d) Borpatra PJ, Deb ML, Baruah PK. (2017) Visible light-promoted metal-free intramolecular cross dehydrogenative coupling approach to 1,3-oxazines. Tetrahedron Lett 58:4006–4010Google Scholar
  49. 49.
    Xu J, Shao L-D, Li D, Deng X, Liu Y-C, Zhao Q-S, Xia C (2014) Construction of tetracyclic 3-spirooxindole through cross-dehydrogenation of pyridinium: applications in facile synthesis of (±)-corynoxine and (±)-corynoxine B. J Am Chem Soc 136:17962–17965PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kumar N, Ghosh S, Bhunia S, Bisai A (2016) Synthesis of 2-oxindoles via ‘transition-metal-free’ intramolecular dehydrogenative coupling (IDC) of sp2 C–H and sp3 C–H bonds. Beilstein J Org Chem 12:1153–1169PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Reddy BN, Ramana CV (2016) Synthesis of functionalized 6-hydroxy-2-oxindole derivatives by phenoxide cyclization. Org Lett 18:6264–6267PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tian H, Yang H, Zhu C, Fu H (2016) Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C–H bonds. Sci Rep 6:19931PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Vanjari R, Guntreddi T, Kumar S, Singh KN (2015) Sulphur promoted C(sp3)–C(sp2) cross dehydrogenative cyclisation of acetophenone hydrazones with aldehydes: efficient synthesis of 3,4,5-trisubstituted 1H-pyrazoles. Chem Commun 51:366–369CrossRefGoogle Scholar
  54. 54.
    (a) Andreades S, Zahnow EW (1969) Anodic cyanations of aromatic compounds. J Am Chem Soc 91:4181–4190. (b) Zhao H.-B, Liu Z.-J, Song J, Xu H.-C (2017) Reagent-free C–H/N–H cross-coupling: regioselective synthesis of N-heteroaromatics from biaryl aldehydes and NH3. Angew Chem Int Ed 129:12906–12909Google Scholar
  55. 55.
    Liu X, Zhang J, Ma S, Ma Y, Wang R (2014) Oxidative cross-dehydrogenative coupling between N-aryl tetrahydroisoquinolins and 5H-oxazol-4-ones through two methodologies: Copper catalysis or a metal-free strategy. Chem Commun 50:15714–15717CrossRefGoogle Scholar
  56. 56.
    Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A (2013) Molecular-iodine-catalyzed aerobic photooxidative C-C bond formation between tertiary amines and carbon nucleophiles. RSC Adv 3:10189–10192CrossRefGoogle Scholar
  57. 57.
    Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A (2013) Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide. Org Lett 15:574–577PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Muramatsu W, Nakanoa K, Li C-J (2014) Direct sp3C-H bond arylation, alkylation, and amidation of tetrahydroisoquinolines mediated by hypervalent iodine(III) under mild conditions Org Biomol Chem 12:2189–2192CrossRefGoogle Scholar
  59. 59.
    Xie Z, Liu L, Chen W, Zheng H, Xu Q, Yuan H, Lou H (2014) Practical metal-free C(sp3)-H functionalization: construction of structurally diverse α-Substituted N-benzyl and N-Allyl carbamates. Angew Chem Int Ed 53:3904–3908CrossRefGoogle Scholar
  60. 60.
    Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR (2013) A versatile C-H functionalization of tetrahydroisoquinolines catalyzed by iodine at aerobic conditions. Org Lett 15:1092–1095PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Matcha K, Antonchick AP (2013) Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew Chem Int Ed 52:2082–2086CrossRefGoogle Scholar
  62. 62.
    (a) Beiring L, Antonchick AP (2015) Regioselective metal-free cross-coupling of quinoline N-oxides with boronic acids. Org Lett 17:3134–3137. (b) Zhang Z, Pi C, Tong H, Cui X, Wu Y (2017) Iodine-catalyzed direct C–H alkenylation of azaheterocycle N-oxides with alkenes. Org Lett 19:440–443Google Scholar
  63. 63.
    Yang K, Bao X, Yao Y, Qu J, Wang B (2018) Iodine-mediated cross-dehydrogenative coupling of pyrazolones and alkenes. Org Biomol Chem 16:6275–6283PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Huang H-Y, Wu H-R, Wei F, Wang D, Liu L (2015) Iodine-catalyzed direct olefination of 2-oxindoles and alkenes via cross-dehydrogenative coupling (CDC) in air. Org Lett 17:3702–3705PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yavari I, Hosseinpour R, Skoulika S (2015) Iodine-mediated diastereoselective cyclopropanation of arylidene malononotriles by 2,6-dimethylquinoline. Synlett 26:380–384CrossRefGoogle Scholar
  66. 66.
    Sharma R, Abdullaha M, Bharate SB (2017) Oxidant-controlled C–sp2/sp3–H cross-dehydrogenative coupling of N-heterocycles with benzylamines. J Org Chem 82:9786–9793PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Jin R, Patureau FW (2016) Mild, periodate-mediated, dehydrogenative C–N bond formation with phenothiazines and phenols. Org Lett 18:4491–4493PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Morimoto K, Ogawa R, Koseki D, Takahashi Y, Dohi T, Kita Y (2015) Clean synthesis of N-pyrrolyl azoles by metal-free oxidative cross-coupling using recyclable hypervalent iodine reagent. Chem Pharm Bull 63:819–824PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shi X, Zhang F, Luo W-K, Yang L (2017) Oxidant-triggered C1-benzylation of isoquinoline by iodine-catalyzed cross-dehydrogenative-coupling with methylarenes. Synlett 28:494–498CrossRefGoogle Scholar
  70. 70.
    Gupta A, Deshmukh MS, Jain N (2017) Iodine-catalyzed C–N bond formation: synthesis of 3-aminoquinoxalinones under ambient conditions. J Org Chem 82:4784–4792PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Liu R, Wang Y, Weng Y, Yao C, Zhang Y, Zhu G, He X, Xu K, Tan G (2017) Iodine-mediated one-pot synthesis of 2-(piperazin-1-yl)pyrazine derivatives from N-alkyl piperazines. Synlett 28:1083–1086CrossRefGoogle Scholar
  72. 72.
    (a) Joseph J, Kim JY, Chang S (2011) A metal-free route to 2-aminooxazoles by taking advantage of the unique ring opening of benzoxazoles and oxadiazoles with secondary amines. Chem Eur J 17:8294–9298. (b) Wang X, Xu D, Miao C, Zhang Q, Sun W (2014) N-Bromosuccinimide as an oxidant for the transition-metal-free synthesis of 2-aminobenzoxazoles from benzoxazoles and secondary amines. Org Biomol Chem 12:3108–3113Google Scholar
  73. 73.
    Tan B, Toda N, Barbas CF III (2012) Organocatalytic amidation and esterification of aldehydes with activating reagents by a cross-coupling strategy. Angew Chem Int Ed 51:12538–12541CrossRefGoogle Scholar
  74. 74.
    Siddaraju Y, Prabhu KR (2016) Iodine-catalyzed cross dehydrogenative coupling reaction: a regioselective sulfenylation of imidazoheterocycles using dimethyl sulfoxide as an oxidant. J Org Chem 81:7838–7846PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hiebel M-A, Berteina-Raboin S (2015) Iodine-catalyzed regioselective sulfenylation of imidazoheterocycles in PEG400. Green Chem 17:937–944CrossRefGoogle Scholar
  76. 76.
    Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W, Wang H (2016) Metal-free iodine-catalyzed direct cross-dehydrogenative coupling (CDC) between pyrazoles and thiols. Org Chem Front 3:1457–1461CrossRefGoogle Scholar
  77. 77.
    Siddaraju Y, Prabhu KR (2017) Iodine-catalyzed sulfenylation of pyrazolones using dimethyl sulfoxide as an oxidant. Org Biomol Chem 15:5191–5196PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    (a) Yang F-L, Tian S-K (2013) Iodine-catalyzed regioselective sulfenylation of indoles with sulfonylhydrazides. Angew Chem Int Ed 52:4929–4932. (b) He Y, Liu S, Wen P, Tian W, Ren X, Zhou Q, Ma H, Huang G (2016) Iodine-catalyzed regioselective sulfenylation of indoles with thiols in water. Chem Sel 1:1567–1570Google Scholar
  79. 79.
    Yi S, Li M, Mo W, Hu X, Hu B, Sun N, Jin L, Shen Z (2016) Metal-free, iodine-catalyzed regioselective sulfenylation of indoles with thiols. Tetrahedron Lett 57:1912–1916CrossRefGoogle Scholar
  80. 80.
    Zhang H, Bao X, Song Y, Qu J, Wang B (2015) Iodine-catalyzed versatile sulfenylation of indoles with thiophenols: controllable synthesis of mono- and bis-arylthioindoles. Tetrahedron 71:8885–8891CrossRefGoogle Scholar
  81. 81.
    Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddy KR (2012) Transition metal-free α-C(sp3)-H bond functionalization of amines by oxidative cross dehydrogenative coupling reaction: Simple and direct access to C-4-Alkylated 3,4-dihydroquinazoline derivatives. Adv Synth Catal 354:2985–2991CrossRefGoogle Scholar
  82. 82.
    Lao Z-Q, Zhong W-H, Lou Q-H, Li Z-J, Meng X-B (2012) KI-catalyzed imidation of sp3 C-H bond adjacent to amide nitrogen atom. Org Biomol Chem 10:7869–7871PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wan L, Qiao K, Sun XN, Di ZC, Fang Z, Li ZJ, Guo K (2016) Benzylation of heterocyclic N-oxides via direct oxidative cross-dehydrogenative coupling with toluene derivatives. New J Chem 40:10227–10232CrossRefGoogle Scholar
  84. 84.
    Yuan J-W, Fu J-H, Liu S-N, Xiao Y-M, Mao P, Qu L-B (2018) Metal-free oxidative coupling of quinoxalin-2(1H)-ones with arylaldehydes leading to 3-acylated quinoxalin-2(1H)-ones. Org Biomol Chem 16:3203–3212PubMedCrossRefGoogle Scholar
  85. 85.
    Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L (2015) TBHP/TFA mediated oxidative cross-dehydrogenative coupling of N-heterocycles with aldehydes. Org Biomol Chem 13:11561–11566PubMedCrossRefGoogle Scholar
  86. 86.
    Mishra K, Pandey AK, Singh JB, Singh RM (2016) Metal free TBHP-promoted intramolecular carbonylation of arenes via radical crossdehydrogenative coupling: Synthesis of indenoquinolinones, 4-azafluorenones and fluorenones. Org Biomol Chem 14:6328–6336PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhang L, Zhang G, Li Y, Wang S, Lei A (2018) The synergistic effect of self-assembly and visible-light induced the oxidative C-H acylation of N-heterocyclic aromatic compounds with aldehydes. Chem Commun 54:5744–5747CrossRefGoogle Scholar
  88. 88.
    Yang Q, Choy PY, Wu Y, Fan B, Kwong FY (2016) Oxidative coupling between C(sp2)–H and C(sp3)–H bonds of indoles and cyclic ethers/cycloalkanes. Org Biomol Chem 14:2608–2612PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Li Z-l, Jina L-k, Cai C (2017) Efficient synthesis of 2-substituted azoles: radical C-H alkylation of azoles with dicumyl peroxide, methylarenes and cycloalkanes under metal-free condition. Org Chem Front 4:2039–2043CrossRefGoogle Scholar
  90. 90.
    Yu L, Wang M, Wang L (2014) Metal-free cross-dehydrogenative coupling of benzimidazoles with aldehydes to N-acylbenzimidazoles. Tetrahedron 70:5391–5397CrossRefGoogle Scholar
  91. 91.
    Aruri H, Singh U, Kumar M, Sharma S, Aithagani SK, Gupta VK, Mignani S, Vishwakarma RA, Singh PP (2017) Metal-free cross-dehydrogenative coupling of HN-azoles with α-C(sp3)-H amides via C–H activation and its mechanistic and application studies. J Org Chem 82:1000–1012PubMedCrossRefGoogle Scholar
  92. 92.
    Patel OPS, Nandwana NK, Sah AK, Kumar A (2018) Metal-free synthesis of aminomethylated imidazoheterocycles: dual role of tert-butyl hydroperoxide as both an oxidant and a methylene source. Org Biomol Chem 16:8620–8628PubMedCrossRefGoogle Scholar
  93. 93.
    Ma Y, Zhang G, Zhang J, Yang D, Wang R (2014) Organocatalyzed asymmetric oxidative coupling of α-C(sp3)-H of tertiary amines to α, β-unsaturated γ-butyrolactam: synthesis of MBH-type products. Org Lett 16:5358–5361PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang G, Ma Y, Wang S, Kong W, Wang R (2013) Chiral organic contact ion pairs in metal-free catalytic enantioselective oxidative cross-dehydrogenative coupling of tertiary amines to ketones. Chem Sci 4:2645–2651CrossRefGoogle Scholar
  95. 95.
    Xie Z, Zan X, Sun S, Pan X, Liu L (2016) Organocatalytic enantioselective cross-dehydrogenative coupling of N-carbamoyl cyclic amines with aldehydes. Org Lett 18:3944–3947PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang B, Cui Y, Jiao N (2012) Metal-free TEMPO-catalyzed oxidative C-C bond formation from Csp3–H bonds using molecular oxygen as the oxidant. Chem Commun 48:4498–4500CrossRefGoogle Scholar
  97. 97.
    Liu TX, Ma J, Chao D, Zhang P, Ma N, Liu Q, Shi L, Zhang Z, Zhang G (2016) Synthesis of C60-fused tetrahydrocarbazole/dibenzothiophene/ benzothiophene and dibenzofuran derivatives via metal-free oxidative dehydrogenative carboannulation. Org Lett 18:4044–4047PubMedCrossRefGoogle Scholar
  98. 98.
    Liu S, Liu A, Zhang Y, Wang W (2017) Direct Cα-heteroarylation of structurally diverse ethers via a mild N-hydroxysuccinimide mediated cross-dehydrogenative coupling reaction. Chem Sci 8:4044–4050PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Haldar S, Jana CK (2019) Direct (het)arylation of tetrahydroisoquinolines via a metal and oxidant free C(sp3)–H functionalization enabled three component reaction. Biomol Chem, Org.  https://doi.org/10.1039/c8ob02309cCrossRefGoogle Scholar
  100. 100.
    Zhang B, Xiang S-K, Zhang L-H, Cui Y, Jiao N (2011) Organocatalytic asymmetric intermolecular dehydrogenative α-alkylation of aldehydes using molecular oxygen as oxidant. Org Lett 13:5212–5215PubMedCrossRefGoogle Scholar
  101. 101.
    Aruri H, Singh U, Sharma S, Gudup S, Bhogal M, Kumar S, Singh D, Gupta VK, Kant R, Vishwakarma RA, Singh PP (2015) Cross-dehydrogenative coupling of azoles with α-C(sp3)–H of ethers and thioethers under metal-free conditions: functionalization of H–N azoles via C–H activation. J Org Chem 80:1929–1936PubMedCrossRefGoogle Scholar
  102. 102.
    Wang L, Zhu K-q, Wu W-t, Chen Q, He M-y (2015) n-Bu4NI-catalyzed direct amination of ethers with aryl tetrazoles and triazoles via crossdehydrogenative coupling reaction. Catal Sci Technol 5:2891–2896CrossRefGoogle Scholar
  103. 103.
    Mendive-Tapia L, Albornoz-Grados A, Bertran A, Albericio F, Lavilla R (2017) Oxidative couplings on tryptophan-based diketopiperazines leading to fused and bridged chemotypes. Chem Commun 53:2740–2743CrossRefGoogle Scholar
  104. 104.
    Rajamanickam S, Majji G, Santra SK, Patel BK (2015) Bu4NI catalyzed C–N bond formation via cross-dehydrogenative coupling of aryl ethers (Csp3–H) and tetrazoles (N–H). Org Lett 17:5586–5589PubMedCrossRefGoogle Scholar
  105. 105.
    Zhou Y, Liu Z, Yuan T, Huang J, Liu C (2017) The synthesis of 2-aminobenzoxazoles using reusable ionic liquid as a green catalyst under mild conditions. Molecules 22:576PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    Dian L, Wang S, Zhang-Negrerie D, Du Y, Zhao K (2014) Organocatalytic amination of alkyl ethers via n-Bu4NI/t-BuOOH-mediated intermolecular oxidative C(sp3)–N bond formation: novel synthesis of hemiaminal ethers. Chem Commun 50:11738–11741CrossRefGoogle Scholar
  107. 107.
    Liu W, Liu C, Zhang Y, Sun Y, Abdukadera A, Wang B, Li H, Ma X, Zhang Z (2015) Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp3 C-N bond formation under metal-free conditions. Org Biomol Chem 13:7154–7158PubMedCrossRefGoogle Scholar
  108. 108.
    Abebe H, Vidavalur S, Battula VR (2016) n-Bu4NI/TBHP-catalyzed C-N bond formation via cross-dehydrogenative coupling of 1H–1,2,4-triazoles (N–H) and methylarenes (Csp3–H). RSC Adv 6:82289–82293CrossRefGoogle Scholar
  109. 109.
    Dong D-Q, Zhang H, Wang Z-L (2017) Synthesis of benzyl esters from the commercially available alcohols catalyzed by TBAI via C(sp3)–H bond functionalization. RSC Adv 7:3780–3782CrossRefGoogle Scholar
  110. 110.
    Chen Q, Wang X, Yu G, Wen C, Huo Y (2018) DDQ-mediated direct C(sp3)–H phosphorylation of xanthenes derivatives. Org Chem Front 5:2652–2656CrossRefGoogle Scholar
  111. 111.
    Tsang AS-K, Todd MH (2009) Facile synthesis of vicinal diamines via oxidation of N-phenyltetrahydroisoquinolines with DDQ. Tetrahedron Lett 50:1199–1202CrossRefGoogle Scholar
  112. 112.
    Xiao T, Li L, Lin G, Mao Z-w, Zhou L (2014) Metal-free visible-light induced cross-dehydrogenative coupling of tertiary amines with diazo compounds. Org Lett 16:4232–4235PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kibriya G, Bagdi AK, Hajra A (2018) Visible-light-promoted C(sp3)–C(sp2) cross-dehydrogenatived coupling of tertiary amine with imidazopyridine. J Org Chem 83:10619–10626PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H (2018) Metal-free C(sp2)–H/N–H cross-dehydrogenative coupling of quinoxalinones with aliphatic amines under visible-light photoredox catalysis. Org Lett 20:7125–7130PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zhao Y, Huang B, Yang C, Xia W (2016) Visible-light-promoted direct amination of phenols via oxidative cross-dehydrogenative coupling reaction. Org Lett 18:3326–3329PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Zhang L, Yi H, Wang J, Lei A (2017) Visible-light mediated oxidative C–H/N–H cross-coupling between tetrahydrofuran and azoles using air. J Org Chem 82:10704–10709PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Yamaguchi T, Yamaguchi E, Itoh A (2017) Cross-dehydrogenative C–H amination of indoles under aerobic photo-oxidative conditions. Org Lett 19:1282–1285PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wang X-F, Yu S-S, Wang C, Xue D, Xiao J (2016) BODIPY catalyzed amide synthesis promoted by BHT and air under visible light. Org Biomol Chem 14:7028–7037PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Sattar M, Rathore V, Prasad CD, Kumar S (2017) Transition-metal-free chemoselective oxidative C-C coupling of the sp3 C-H bond of oxindoles with arenes and addition to alkene: Synthesis of 3-aryl oxindoles, and benzofuro- and indoloindoles. Chem Asian J 12:734–743PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Liu W-B, Schuman DP, Yang Y-F, Toutov AA, Liang Y, Klare HFT, Nesnas N, Oestreich M, Blackmond DG, Virgil SC, Banerjee S, Zare RN, Grubbs RH, Houk KN, Stoltz BM (2017) Potassium tert-butoxide-catalyzed dehydrogenative C–H silylation of heteroaromatics: A combined experimental and computational mechanistic study. J Am Chem Soc 139:6867–6879PubMedCrossRefGoogle Scholar
  121. 121.
    Chen X, Cui X, Yang F, Wu Y (2015) Base-promoted cross-dehydrogenative coupling of quinoline N-oxides with 1,3-azoles. Org Lett 17:1445–1448PubMedCrossRefGoogle Scholar
  122. 122.
    Li S-S, Fu S, Wang L, Xu L, Xiao J (2017) t-BuOK-mediated oxidative dehydrogenative C(sp3)-H arylation of 2-alkylazaarenes with nitroarenes. J Org Chem 82:8703–8709PubMedCrossRefGoogle Scholar
  123. 123.
    Khalymbadzha IA, Chupakhin ON, Fatykhov RF, Charushin VN, Schepochkin AV, Kartsev VG (2016) Transition-metal-free cross-dehydrogenative coupling of triazines with 5,7-dihydroxycoumarins. Synlett 27:2606–2610CrossRefGoogle Scholar
  124. 124.
    Chen W, Zheng H, Pan X, Xie Z, Zan X, Sun B, Liu L, Lou H (2014) A metal-free cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinoline by sodium persulfate. Tetrahedron Lett 55:2879–2882CrossRefGoogle Scholar
  125. 125.
    Li X, Wang H-Y, Shi Z-J (2013) Transition-metal-free cross-dehydrogenative alkylation of pyridines under neutral conditions. New J Chem 37:1704–1706CrossRefGoogle Scholar
  126. 126.
    Toonchue S, Sumunnee L, Phomphrai K, Yotphan S (2018) Metal-free direct oxidative C–C bond coupling of pyrazolones and quinoxalinones. Org Chem Front 5:1928–1932CrossRefGoogle Scholar
  127. 127.
    Siddaraju Y, Lamani M, Prabhu KR (2014) A transition metal-free Minisci reaction: Acylation of isoquinolines, quinolines, and quinoxaline. J Org Chem 79:3856–3865PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Tanoue A, Yoo W-J, Kobayashi S (2014) Sulfuryl chloride as an efficient initiator for the metal-free aerobic cross-dehydrogenative coupling reaction of tertiary amines. Org Lett 16:2346–2349PubMedCrossRefGoogle Scholar
  129. 129.
    Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Gohari SJA (2016) Transition-metal-free acylation of quinolines and isoquinolines with arylmethanols via oxidative cross-dehydrogenative coupling reactions. Synlett 27:2241–2245CrossRefGoogle Scholar
  130. 130.
    Babu GVS, Prathima PS, Perumgani PC, Sridhar B, Rao TV, Rao MM (2018) Metal-free cross-dehydrogenative coupling approach for C−H bond functionalization of 2-phenyl pyridine derivatives in water. Heteroatom Chem e21423Google Scholar
  131. 131.
    Ganley JM, Christensen M, Lam Y-H, Peng Z, Angeles AR, Yeung CS (2018) Metal-and acid-free C–H formylation of nitrogen heterocycles: using trioxane as an aldehyde equivalent enabled by an organic-soluble oxidant. Org Lett 20:5752–5756PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Dhineshkumar J, Samaddar P, Prabhu KR (2017) Catalyst-free cross-dehydrogenative coupling strategy using air as an oxidant: synthesis of α-aminophosphonates. ACS Omega 2:4885–4893CrossRefGoogle Scholar
  133. 133.
    Osorio-Nieto U, Chamorro-Arenas D, Quintero L, Höpfl H, Sartillo-Piscil F (2016) Transition metal-free selective double sp3 C-H oxidation of cyclic amines to 3-alkoxyamine lactams. J Org Chem 81:8625–8632PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Griffiths RJ, Kong WC, Richards SA, Burley GA, Willis MC, Talbot EPA (2018) Oxidative β-C–H sulfonylation of cyclic amines. Chem. Sci. 9:2295–2300PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Organic Synthesis and Process ChemistryCSIR—Indian Institute of Chemical Technology (CSIR-IICT)HyderabadIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  3. 3.Univ Rennes, UMR 6226 (Institut Des Sciences Chimiques de Rennes)RennesFrance

Personalised recommendations