Advertisement

Cross-Dehydrogenative Coupling in the Synthesis and Functionalization of Fused Imidazoheterocycles

Chapter
  • 378 Downloads

Abstract

Imidazoheterocycles, containing a fused imidazole ring, are recognized as privileged scaffolds due to their wide range of applications in the field of biological activities, pharmaceuticals, optoelectronics, material science, etc. As a consequence, the development of synthetic strategies for the construction of functionalized imidazoheterocycles is an important activity of the synthetic chemists over the last few decades. Cross-dehydrogenative coupling (CDC) has been emerged as an important synthetic strategy for the direct synthesis of bioactive molecules and is carried out employing different catalytic systems like transition-metal catalysis (Pd, Cu, Ag, etc.), iodine catalysis, organophotocatalysis, etc. This chapter will offer an overview of the synthesis and functionalization of various biologically relevant imidazoheterocycle derivatives like imidazopyridine, imidazothiazole, imidazopyrimidine, etc. via cross-dehydrogenative coupling reactions. The importance of this strategy over traditional pathway has been also emphasized in this chapter.

Keywords

Cross-dehydrogenative coupling Imidazoheterocycle C–C bond C–heteroatom bond 

References

  1. 1.
    (a) Enguehard-Gueiffier C, Gueiffier A (2007) Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini-Rev Med Chem 7:888–899. (b) Andreani A, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Varoli L, Calonghi N, Cappadone C, Farruggia G, Zini M, Stefanelli C, Masotti L, Radin NS, Shoemaker RH (2008) New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues. J Med Chem 51:809–816Google Scholar
  2. 2.
    (a) Harrison TS, Keating GM (2005) Zolpidem: a review of its use in the management of insomnia. CNS Drugs 19:65–89. (b) Hsu N, Jha SK, Coleman T, Frank MG (2009) Paradoxical effects of the hypnotic zolpidem in the neonatal ferret. Behav Brain Res 201:233–236Google Scholar
  3. 3.
    (a) Shao N, Pang G-X, Yan C-X, Shi G-F, Cheng Y (2011) Reaction of β-lactam carbenes with 2-pyridyl isonitriles: a one-pot synthesis of 2-carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines useful as fluorescent probes for mercury ion. J Org Chem 76:7458–7465. (b) Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT (2012) Imidazo[1,2-a]pyridines susceptible to excited state intramolecular proton transfer: one-pot synthesis via an ortoleva-king reaction. J Org Chem 77:5552–5558Google Scholar
  4. 4.
    Egner U, Gerbling KP, Hoyer G-A, Krüger G, Wegner P (1996) Design of inhibitors of photosystem II using a model of the D1 protein. Pestic Sci 47:145–158CrossRefGoogle Scholar
  5. 5.
    John A, Shaikh MM, Ghosh P (2009) Palladium complexes of abnormal N-heterocyclic carbenes as precatalysts for the much preferred Cu-free and amine-free sonogashira coupling in air in a mixed-aqueous medium. Dalton Trans 10581–10591Google Scholar
  6. 6.
    (a) Bagdi AK, Santra S, Monir K, Hajra A (2015) Synthesis of imidazo[1,2-a]pyridines: a decade update. Chem Commun 51:1555–1575. (b) Bagdi AK, Hajra A (2016) Design, synthesis, and functionalization of imidazoheterocycles. Chem. Rec. 16:1868–1885. (c) Pericherla K, Kaswan P, Pandey K, Kumar A (2015) Recent developments in the synthesis of imidazo[1,2-a]pyridines. Synthesis 47:887–912. (d) Koubachi J, Kazzouli SE, Bousmina M, Guillaumet G (2014) Functionalization of imidazo[1,2-a]pyridines by means of metal-catalyzed cross-coupling reactions. Eur J Org Chem 5119–5138Google Scholar
  7. 7.
    Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G (2009) Pd/Cu-catalyzed oxidative C–H alkenylation of imidazo[1,2-a]pyridines. Synthesis 2:0271–0276Google Scholar
  8. 8.
    Zhan H, Zhao L, Li N, Chen L, Liu J, Liao J, Cao H (2014) Ruthenium-catalyzed direct C-3 oxidative olefination of imidazo[1,2-a]pyridines. RSC Adv 4:32013–32016CrossRefGoogle Scholar
  9. 9.
    Cao H, Lei S, Liao J, Huang J, Qiu H, Chen Q, Qiu S, Chen Y (2014) Palladium(II)-catalyzed intermolecular oxidative C-3 alkenylations of imidazo[1,2-a] pyridines by substrate-contolled regioselective C–H functionalization. RSC Adv. 4:50137–50140CrossRefGoogle Scholar
  10. 10.
    Ghosh M, Naskar A, Mitra S, Hajra A (2015) Palladium-catalyzed α-selective alkenylation of imidazo[1,2-a]pyridines through aerobic cross-dehydrogenative coupling reaction. Eur J Org Chem 715–718CrossRefGoogle Scholar
  11. 11.
    Wang S, Liu W, Cen J, Liao J, Huang J, Zhan H (2014) Pd-catalyzed oxidative cross-coupling of imidazo[1,2-a]pyridine with arenes. Tetrahedron Lett 55:1589–1592CrossRefGoogle Scholar
  12. 12.
    Lei S, Cao H, Chen L, Liu J, Cai H, Tana J (2015) Regioselective oxidative homocoupling reaction: an efficient copper-catalyzed synthesis of biimidazo[1,2-a]pyridines. Adv Synth Catal 357:3109–3114CrossRefGoogle Scholar
  13. 13.
    Shakoor SMA, Mandal SK, Sakhuja R (2017) An articulate oxidative transition-metal-free homocoupling of imidazo heterocycles through C(sp2)-C(sp2) bond formation. Eur J Org Chem 2596–2602CrossRefGoogle Scholar
  14. 14.
    (a) Jiang Y, Xu K, Zeng C (2018) Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev 118:4485–4540. (b) Waldvogel SR, Lips S, Selt M, Riehl B, Kamp CJ (2018) Electrochemical arylation reaction. Chem Rev 118:6706–6765Google Scholar
  15. 15.
    Gao Y, Wang Y, Zhou J, Mei H, Han J (2018) An electrochemical oxidative homocoupling reaction of imidazopyridine heterocycles to biheteroaryls. Green Chem 20:583–587CrossRefGoogle Scholar
  16. 16.
    Shakoor SMA, Agarwal DS, Kumar A, Sakhuja R (2016) Copper catalyzed direct aerobic double-oxidative cross-dehydrogenative coupling of imidazoheterocycles with aryl acetaldehydes: an articulate approach for dicarbonylation at C-3 position. Tetrahedron 72:645–652CrossRefGoogle Scholar
  17. 17.
    Samanta S, Mondal S, Santra S, Kibriya G, Hajra A (2016) FeCl3-catalyzed cross-dehydrogenative coupling between imidazoheterocycles and oxoaldehydes. J Org Chem 81:10088–10093CrossRefGoogle Scholar
  18. 18.
    Jiao J, Zhang J-R, Liao Y-Y, Xu L, Hu M, Tang R-Y (2017) CuCl/air-mediated oxidative coupling reaction of imidazoheterocycles with N-Aryl glycine esters. RSC Adv 7:30152–30159CrossRefGoogle Scholar
  19. 19.
    Zhu Z-Q, Xiao L-J, Zhou C-C, Song H-L, Xie Z-B, Le Z-G (2018) A visible-light-promoted cross-dehydrogenativecoupling reaction of N-arylglycine esters with imidazo[1,2-a]pyridines. Tetrahedron Lett 59:3326–3331CrossRefGoogle Scholar
  20. 20.
    (a) Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113Google Scholar
  21. 21.
    (a) Skubi KL, Blum TR, Yoon TP (2016) Dual catalysis strategies in photochemical synthesis. Chem Rev 116:10035–10074. (b) Ghosh I, Marzo L, Das A, Shaikh R, König B (2016) Visible light mediated photoredox catalytic arylation reactions. Acc Chem Res 49:1566–1577Google Scholar
  22. 22.
    Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166CrossRefGoogle Scholar
  23. 23.
    Kibriya G, Bagdi AK, Hajra A (2018) Visible-light-promoted C(sp3)-C(sp2) cross-dehydrogenative coupling of tertiary amine with imidazopyridine. J Org Chem 83:10619–10626CrossRefGoogle Scholar
  24. 24.
    Yang Q, Li S, Wang J(J) (2018) Cobalt-catalyzed cross-dehydrogenative coupling of imidazo[1,2-a]pyridines with isochroman using molecular oxygen as the oxidant. Org Chem Front 5:577–581CrossRefGoogle Scholar
  25. 25.
    Mondal S, Samanta S, Singsardar M, Hajra A (2017) Aminomethylation of imidazoheterocycles with morpholine. Org Lett 19:3751–3754CrossRefGoogle Scholar
  26. 26.
    Gao Y, Chen S, Lu W, Gu W, Liu P, Sun P (2017) Visible light-induced C3-sulfonamidation of imidazopyridines with sulfamides. Org Biomol Chem 15:8102–8109CrossRefGoogle Scholar
  27. 27.
    Chen H, Yi H, Tang Z, Bian C, Zhang H, Lei A (2018) External oxidant-free regioselective cross-dehydrogenative coupling of 2-arylimidazoheterocycles and azoles with H2 evolution via photoredox catalysis. Adv Synth Catal 360:3220–3227CrossRefGoogle Scholar
  28. 28.
    Samanta S, Ravi C, Rao SN, Joshi A, Adimurthy S (2017) Visible-light-promoted selective C–H amination of heteroarenes with heteroaromatic amines under metal-free conditions. Org Biomol Chem 15:9590–9594CrossRefGoogle Scholar
  29. 29.
    Sun K, Mu S, Liu Z, Feng R, Li Y, Pang K, Zhang B (2018) Copper-catalyzed C–N bond formation with imidazo[1,2-a]pyridines. Org Biomol Chem 16:6655–6658CrossRefGoogle Scholar
  30. 30.
    Tantry SJ, Markad SD, Shinde V, Bhat J, Balakrishnan G, Gupta AK, Ambady A, Raichurkar AV, Kedari C, Sharma S, Mudugal NV, Narayan A, Kumar CNN, Nanduri R, Bharath S, Reddy J, Panduga V, Prabhakar KR, Kandaswamy K, Saralaya R, Kaur P, Dinesh N, Guptha S, Rich K, Murray D, Plant H, Preston M, Ashton H, Plant D, Walsh J, Alcock P, Naylor K, Collier M, Whiteaker J, McLaughlin RE, Mallya M, Panda M, Rudrapatna S, Ramachandran V, Shandil RK, Sambandamurthy VK, Mdluli K, Cooper CB, Rubin H, Yano T, Iyer PS, Narayanan S, Kavanagh S, Mukherjee K, Balasubramanian V, Hosagrahara VP, Solapure S, Ravishankar S, Shahul HP (2017) Discovery of imidazo[1,2-a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J Med Chem 60:1379–1399CrossRefGoogle Scholar
  31. 31.
    Kibriya G, Samanta S, Jana S, Mondal S, Hajra A (2017) Visible light organic photoredox-catalyzed C–H alkoxylation of imidazopyridine with alcohol. J Org Chem 82:13722–13727CrossRefGoogle Scholar
  32. 32.
    Dong D-Q, Hao S-H, Yang D-S, Li L-X, Wang Z-L (2017) Sulfenylation of C–H bonds for C–S bond formation under metal-free conditions. Eur J Org Chem 6576–6592CrossRefGoogle Scholar
  33. 33.
    (a) Gueiffier A, Mavel S, Lhassani M, Elhakmoui A, Snoeck R, Andrei G, Chavignon O, Teulade J-C, Witvrouw M, Balzarini J, De Clercq E, Chapat J-P (1998) Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J Med Chem 41:5108–5112. (b) Véron J-B, Allouchi H, Enguehard-Gueiffier C, Snoeck R, Andrei G, De Clercq E, Gueiffier A (2008) Influence of 6- or 8-substitution on the antiviral activity of 3-arylalkylthiomethylimidazo[1,2-a]pyridine against human cytomegalovirus (CMV) and Varicella-Zoster Virus (VZV): Part II. Bioorg Med Chem 16:9536–9545Google Scholar
  34. 34.
    Ravi C, Adimurthy S (2017) Synthesis of imidazo[1,2-a]pyridines: C–H functionalization in the direction of C–S bond formation. Chem Rec 17:1019–1038CrossRefGoogle Scholar
  35. 35.
    Hamdouchi C, Sanchez C, Ezquerra J (1998) Chemoselective arylsulfenylation of 2-aminoimidazo[1,2-a]pyridines by phenyliodine(III) bis(trifluoroacetate) (PIFA). Synthesis 867–872CrossRefGoogle Scholar
  36. 36.
    Ravi C, Mohan DC, Adimurthy S (2014) N-chlorosuccinimide-promoted regioselective sulfenylation of imidazoheterocycles at room temperature. Org Lett 16:2978–2981CrossRefGoogle Scholar
  37. 37.
    Hiebel M-A, Berteina-Raboin S (2015) Iodine-catalyzed regioselective sulfenylation of imidazoheterocycles in PEG400. Green Chem 17:937–944CrossRefGoogle Scholar
  38. 38.
    Huang X, Chen Y, Zhen S, Song L, Gao M, Zhang P, Li H, Yuan B, Yang G (2018) Cobalt-catalyzed aerobic cross-dehydrogenative coupling of C–H and thiols in water for C–S formation. J Org Chem 83:7331–7340CrossRefGoogle Scholar
  39. 39.
    Cao H, Chen L, Liu J, Cai H, Deng H, Chen G, Yan C, Chen Y (2015) Regioselective copper-catalyzed thiolation of imidazo[1,2-a]pyridines: an efficient C–H functionalization strategy for C–S bond formation. RSC Adv. 5:22356–22360CrossRefGoogle Scholar
  40. 40.
    Liu W, Wang S, Jiang Y, He P, Zhang Q, Cao H (2015) Copper-catalyzed regioselective C5-sulfenylation of imidazo[2,1-b]thiazoles with thiols. Asian J Org Chem 4:312–315CrossRefGoogle Scholar
  41. 41.
    Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A (2018) Electrochemical oxidative C–H sulfenylation of imidazopyridines with hydrogen evolution. J Chem, Chinese.  https://doi.org/10.1002/cjoc.201800405CrossRefGoogle Scholar
  42. 42.
    Zheng Z, Qi D, Shi L (2015) Copper-catalyzed thiolation of imidazo[1,2-a]pyridines with (Hetero)aryl thiols using molecular oxygen. Catalysis Commun. 66:83–86CrossRefGoogle Scholar
  43. 43.
    Siddaraju Y, Prabhu KR (2016) Iodine-catalyzed cross-dehydrogenative coupling reaction: a regioselective sulfenylation of imidazoheterocycles using dimethyl sulfoxide as an oxidant. J Org Chem 81:7838–7846CrossRefGoogle Scholar
  44. 44.
    Yadav M, Dara S, Saikam V, Kumar M Aithagani SK, Paul S, Vishwakarma RA, Singh PP (2015) Regioselective oxidative C–H phosphonation of imidazo[1,2-a]pyridines and related heteroarenes mediated by manganese(III) acetate. Eur J Org Chem 6526–6533CrossRefGoogle Scholar
  45. 45.
    Pericherla K, Khedar P, Khungar B, Kumar A (2013) One-pot sequential C–N coupling and cross-dehydrogenative couplings: synthesis of novel azole fused imidazo[1,2-a]pyridines. Chem Commun 49:2924–2926CrossRefGoogle Scholar
  46. 46.
    Firmansyah D, Banasiewicz M, Gryko DT (2015) Vertically-expanded imidazo[1,2-a]pyridines and imidazo[1,5-a]pyridine via dehydrogenative coupling. Org Biomol Chem 13:1367–1374CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KalyaniKalyaniIndia
  2. 2.Department of ChemistryVisva-Bharati (a Central University)SantiniketanIndia

Personalised recommendations