Functionalization of Aromatic N-Heterocycles via C(sp2)–H/C(sp2)–H CDC Reactions



This review is devoted to dehydrogenative C(sp2)–C(sp2) cross-coupling reactions. In the review we discussed the reactions of aromatic N-heterocycles with such reagents as amides and aldehydes, alkenes, aromatic and heterocyclic compounds with the formation of the corresponding C–H/C–H coupling products. The review is focused on mechanism as well as scope and limitations of dehydrogenative cross-coupling reactions.


N-heterocycles Dehydrogenative cross-coupling C(sp2)–C(sp2) bond formation 



This work was supported by the Russian Science Foundation (project #19-73-10144).


  1. 1.
    Fanta PE (1974) The Ullmann synthesis of biaryls. Synthesis 1974:9–21CrossRefGoogle Scholar
  2. 2.
    Colacot TJ (2015) New trends in cross-coupling: theory and applications. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Minisci F (1976) Recent aspects of homolytic aromatic substitutions. In: Minisci F, Hendrickson JB, Wentrup C (eds) Synthetic and mechanistic organic chemistry. Springer, Berlin, pp 1–48CrossRefGoogle Scholar
  4. 4.
    Citterio A, Gentile A, Minisci F, Serravalle M, Ventura S (1984) Polar effects in free-radical reactions. Carbamoylation and α-N-amidoalkylation of heteroaromatic bases by amides and hydroxylamine-O-sulfonic acid. J Org Chem 49:3364–3367CrossRefGoogle Scholar
  5. 5.
    Citterio A, Gentile A, Minisci F, Serravalle M, Ventura S (1983) Redox-chain decomposition of hydroxylamine-O-sulphonic acid. A novel general source of nucleophilic radicals for the functionalization of heteroaromatic bases. J Chem Soc Chem Commun (16):916–917Google Scholar
  6. 6.
    Yao B, Deng C-L, Liu Y, Tang R-Y, Zhang X-G, Li J-H (2015) Palladium-catalyzed oxidative carbamoylation of isoquinoline N-oxides with formylamides by means of dual C-H oxidative coupling. Chem Commun 51:4097–4100CrossRefGoogle Scholar
  7. 7.
    Han W, Jin F, Zhao Q, Du H, Yao L (2016) Acid-free silver-catalyzed cross-dehydrogenative carbamoylation of pyridines with formamides. Synlett 27:1854–1859CrossRefGoogle Scholar
  8. 8.
    Mete TB, Singh A, Bhat RG (2017) Transition-metal-free synthesis of primary to tertiary carboxamides: a quick access to prodrug-pyrazinecarboxamide. Tetrahedron Lett 58:4709–4712CrossRefGoogle Scholar
  9. 9.
    Edwards AC, Geist A, Müllich U, Sharrad CA, Pritchard RG, Whitehead RC, Harwood LM (2017) Transition metal-free, visible-light mediated synthesis of 1,10-phenanthroline derived ligand systems. Chem Commun 53:8160–8163CrossRefGoogle Scholar
  10. 10.
    Lewis FW, Harwood LM, Hudson MJ, Drew MGB, Hubscher-Bruder V, Videva V, Arnaud-Neu F, Stamberg K, Vyas S (2013) BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorg Chem 52:4993–5005PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Higginson MA, Kyle ND, Marsden OJ, Thompson P, Livens FR, Heath SL (2015) Synthesis of functionalised BTPhen derivatives—effects on solubility and americium extraction. Dalton Trans 44:16547–16552PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    He T, Li H, Li P, Wang L (2011) Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate. Chem Commun 47:8946–8948CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Teuscher KB, Ji H (2016) Direct α-heteroarylation of amides (α to nitrogen) and ethers through a benzaldehyde-mediated photoredox reaction. Chem Sci 7:2111–2118PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Matcha K, Antonchick AP (2013) Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew Chem Int Ed 52:2082–2086CrossRefGoogle Scholar
  15. 15.
    Cheng P, Qing Z, Liu S, Liu W, Xie H, Zeng J (2014) Regiospecific Minisci acylation of phenanthridine via thermolysis or photolysis. Tetrahedron Lett 55:6647–6651CrossRefGoogle Scholar
  16. 16.
    Siddaraju Y, Lamani M, Prabhu KR (2014) A transition metal-free Minisci reaction: acylation of isoquinolines, quinolines, and quinoxaline. J Org Chem 79:3856–3865PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L (2015) TBHP/TFA mediated oxidative cross-dehydrogenative coupling of N-heterocycles with aldehydes. Org Biomol Chem 13:11561–11566PubMedCrossRefGoogle Scholar
  18. 18.
    Siddaraju Y, Prabhu KR (2016) Transition metal-free Minisci reaction promoted by NCS, and TBHP: acylation of heteroarenes. Tetrahedron 72:959–967CrossRefGoogle Scholar
  19. 19.
    Kianmehr E, Kazemi S, Foroumadi A (2014) Palladium-catalyzed oxidative C-H bond coupling of indoles and benzaldehydes: a new approach to the synthesis of 3-benzoylindoles. Tetrahedron 70:349–354CrossRefGoogle Scholar
  20. 20.
    Shakoor SMA, Agarwal DS, Kumar A, Sakhuja R (2016) Copper catalyzed direct aerobic double-oxidative cross-dehydrogenative coupling of imidazoheterocycles with aryl acetaldehydes: an articulate approach for dicarbonylation at C-3 position. Tetrahedron 72:645–652CrossRefGoogle Scholar
  21. 21.
    Samanta S, Mondal S, Santra S, Kibriya G, Hajra A (2016) FeCl3-catalyzed cross-dehydrogenative coupling between imidazoheterocycles and oxoaldehydes. J Org Chem 81:10088–10093PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon−carbon bonds by oxidizing two carbon−hydrogen bonds. Chem Rev 111:1215–1292PubMedCrossRefGoogle Scholar
  23. 23.
    Ferreira EM, Zhang H, Stoltz BM (2009) Oxidative heck‐type reactions (Fujiwara–Moritani reactions). In: The Mizoroki–Heck reaction. Wiley-Blackwell, Hoboken, pp 345–382Google Scholar
  24. 24.
    Li JJ (2009) Heck reaction. In: Li JJ (ed) Name reactions: a collection of detailed mechanisms and synthetic applications. Springer, Berlin, pp 277–280CrossRefGoogle Scholar
  25. 25.
    Hu H, Liu Y, Zhong H, Zhu Y, Wang C, Ji M (2012) Heck-type cross-dehydrogenative coupling reactions of indolizines at the 3-position with electron-deficient alkenes through palladium-catalyzed C–H activation. Chem Asian J 7:884–888CrossRefGoogle Scholar
  26. 26.
    Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G (2009) Pd/Cu-catalyzed oxidative C-H alkenylation of imidazo[1,2-a]pyridines. Synthesis 2009:271–276CrossRefGoogle Scholar
  27. 27.
    Zhan H, Zhao L, Li N, Chen L, Liu J, Liao J, Cao H (2014) Ruthenium-catalyzed direct C-3 oxidative olefination of imidazo[1,2-a]pyridines. RSC Adv 4:32013–32016CrossRefGoogle Scholar
  28. 28.
    Ghosh M, Naskar A, Mitra S, Hajra A (2015) Palladium-catalyzed α-selective alkenylation of imidazo[1,2-a]pyridines through aerobic cross-dehydrogenative coupling reaction. Eur J Org Chem 2015:715–718CrossRefGoogle Scholar
  29. 29.
    Yang Y, Cheng K, Zhang Y (2009) Highly regioselective palladium-catalyzed oxidative coupling of indolizines and vinylarenes via C−H bond cleavage. Org Lett 11:5606–5609PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee W-C, Wang T-H, Ong T-G (2014) Ligand promoted Pd-catalyzed dehydrogenative alkenylation of hetereoarenes. Chem Commun 50:3671–3673CrossRefGoogle Scholar
  31. 31.
    Zhang Z, Zheng Y, Sun Z, Dai Z, Tang Z, Ma J, Ma C (2017) Direct olefination of fluorinated quinoxalines via cross-dehydrogenative coupling reactions: a new near-infrared probe for mitochondria. Adv Synth Catal 359:2259–2268CrossRefGoogle Scholar
  32. 32.
    Liu W, Wang S, Zhan H, Lin J, He P, Jiang Y (2014) Highly regioselective palladium-catalyzed direct alkenylation of thiazolo[3,2-b]-1,2,4-triazoles via CH activation. Tetrahedron Lett 55:3549–3552CrossRefGoogle Scholar
  33. 33.
    Beck EM, Grimster NP, Hatley R, Gaunt MJ (2006) Mild aerobic oxidative palladium (II) catalyzed C−H bond functionalization: regioselective and switchable C−H alkenylation and annulation of pyrroles. J Am Chem Soc 128:2528–2529PubMedCrossRefGoogle Scholar
  34. 34.
    Su Y, Zhou H, Chen J, Xu J, Wu X, Lin A, Yao H (2014) Solvent-controlled switchable C-H alkenylation of 4-aryl-1H-pyrrole-3-carboxylates: application to the total synthesis of (±)-rhazinilam. Org Lett 16:4884–4887PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bugaut X, Glorius F (2011) Palladium-catalyzed selective dehydrogenative cross-couplings of heteroarenes. Angew Chem Int Ed 50:7479–7481CrossRefGoogle Scholar
  36. 36.
    Hirano K, Miura M (2015) Copper-mediated intermolecular C–H/C–H and C–H/N–H couplings via aromatic C–H cleavage. C-H bond activation and catalytic functionalization II. Springer, Cham, pp 47–65CrossRefGoogle Scholar
  37. 37.
    Varun BV, Dhineshkumar J, Bettadapur KR, Siddaraju Y, Alagiri K, Prabhu KR (2017) Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Lett 58:803–824CrossRefGoogle Scholar
  38. 38.
    Yang Y, Lan J, You J (2017) Oxidative C-H/C–H coupling reactions between two (hetero)arenes. Chem Rev 117:8787–8863PubMedCrossRefGoogle Scholar
  39. 39.
    Charushin V, Chupakhin O (2018) Metal-free C–H functionalization of aromatic compounds through the action of nucleophilic reagents. SpringerLink. Accessed 21 Sept 2018
  40. 40.
    Mao Z, Wang Z, Xu Z, Huang F, Yu Z, Wang R (2012) Copper(II)-mediated dehydrogenative cross-coupling of heteroarenes. Org Lett 14:3854–3857PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Qin X, Feng B, Dong J, Li X, Xue Y, Lan J, You J (2012) Copper(II)-catalyzed dehydrogenative cross-coupling between two azoles. J Org Chem 77:7677–7683PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fan S, Chen Z, Zhang X (2012) Copper-catalyzed dehydrogenative cross-coupling of benzothiazoles with thiazoles and polyfluoroarene. Org Lett 14:4950–4953PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Yang S-W, Su Y-X, Sun L-P (2014) Palladium-catalyzed oxidative C-H/C–H cross-couplings of thiazolo[5,4-d]pyrimidine with aromatic (hetero)cycles. Tetrahedron 70:3730–3734CrossRefGoogle Scholar
  44. 44.
    Kuhl N, Hopkinson MN, Glorius F (2012) Selective rhodium(III)-catalyzed cross-dehydrogenative coupling of furan and thiophene derivatives. Angew Chem Int Ed 51:8230–8234CrossRefGoogle Scholar
  45. 45.
    Li Y, Wang W-H, Yang S-D, Li B-J, Feng C, Shi Z-J (2010) Oxidative dimerization of N-protected and free indole derivatives toward 3,3′-biindoles via Pd-catalyzed direct C-H transformations. Chem Commun 46:4553–4555CrossRefGoogle Scholar
  46. 46.
    Total synthesis of 5,5′,6,6′-tetrahydroxy-3,3′-biindolyl, the proposed structure of a potent antioxidant found in beetroot (Beta vulgaris)—ScienceDirect. Accessed 9 Nov 2018
  47. 47.
    Xia J-B, Wang X-Q, You S-L (2009) Synthesis of biindolizines through highly regioselective palladium-catalyzed C−H functionalization. J Org Chem 74:456–458PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lei S, Cao H, Chen L, Liu J, Cai H, Tan J (2015) Regioselective oxidative homocoupling reaction: an efficient copper-catalyzed synthesis of biimidazo[1,2-a]pyridines. Adv Synth Catal 357:3109–3114CrossRefGoogle Scholar
  49. 49.
    Nishino M, Hirano K, Satoh T, Miura M (2012) Copper-mediated and copper-catalyzed cross-coupling of indoles and 1,3-azoles: double C-H activation. Angew Chem Int Ed 51:6993–6997CrossRefGoogle Scholar
  50. 50.
    Le J, Gao Y, Ding Y, Jiang C (2016) Cu-mediated C2-dehydrogenative homocoupling of indoles via C-H activation assisted by a removable N-pyrimidyl group. Tetrahedron Lett 57:1728–1731CrossRefGoogle Scholar
  51. 51.
    Qin X, Liu H, Qin D, Wu Q, You J, Zhao D, Guo Q, Huang X, Lan J (2013) Chelation-assisted Rh(III)-catalyzed C2-selective oxidative C-H/C–H cross-coupling of indoles/pyrroles with heteroarenes. Chem Sci 4:1964–1969CrossRefGoogle Scholar
  52. 52.
    Reddy VP, Qiu R, Iwasaki T, Kambe N (2013) Rhodium-catalyzed intermolecular oxidative cross-coupling of (hetero)arenes with chalcogenophenes. Org Lett 15:1290–1293PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Tripathi KN, Ray D, Singh RP (2017) Pd-Catalyzed regioselective intramolecular dehydrogenative C-5 cross coupling in an N-substituted pyrrole-azole system. Org Biomol Chem 15:10082–10086PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tripathi KN, Ray D, Singh RP (2017) Synthesis of pyrrole-annulated heterocycles through copper-catalyzed site-selective dehydrogenative cross-coupling. Eur J Org Chem 2017:5809–5813CrossRefGoogle Scholar
  55. 55.
    Ray D, Manikandan T, Roy A, Tripathi KN, Singh RP (2015) Ligand-promoted intramolecular dehydrogenative cross-coupling using a Cu catalyst: direct access to polycyclic heteroarenes. Chem Commun 51:7065–7068CrossRefGoogle Scholar
  56. 56.
    Mantenuto S, Ciccolini C, Lucarini S, Piersanti G, Favi G, Mantellini F (2017) Palladium(II)-catalyzed intramolecular oxidative C-H/C–H cross-coupling reaction of C3, N-linked biheterocycles: rapid access to polycyclic nitrogen heterocycles. Org Lett 19:608–611PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bharathimohan K, Ponpandian T, Ahamed AJ, Bhuvanesh N (2014) Sequential decarboxylative azide–alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles. Beilstein J Org Chem 10:3031–3037PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang Z, Li B, Zhang X, Fan X (2016) One-pot cascade reactions leading to pyrido[2′,1′:2,3]imidazo[4,5-c][1,2,3]triazolo[1,5-a]quinolines under bimetallic relay catalysis with air as the oxidant. J Org Chem 81:6357–6363PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Pericherla K, Khedar P, Khungar B, Kumar A (2013) One-pot sequential C-N coupling and cross dehydrogenative couplings: synthesis of novel azole fused imidazo[1,2-a]pyridines. Chem Commun 49:2924–2926CrossRefGoogle Scholar
  60. 60.
    Wu G, Zhou J, Zhang M, Hu P, Su W (2012) Palladium-catalyzed direct arylation of benzoxazoles with unactivated simple arenes. Chem Commun 48:8964–8966CrossRefGoogle Scholar
  61. 61.
    Malakar CC, Schmidt D, Conrad J, Beifuss U (2011) Double C−H activation: the palladium-catalyzed direct C-arylation of xanthines with arenes. Org Lett 13:1378–1381PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li Z, Ma L, Xu J, Kong L, Wu X, Yao H (2012) Pd(II)-catalyzed direct C5-arylation of azole-4-carboxylates through double C-H bond cleavage. Chem Commun 48:3763–3765CrossRefGoogle Scholar
  63. 63.
    Wang S, Liu W, Cen J, Liao J, Huang J, Zhan H (2014) Pd-catalyzed oxidative cross-coupling of imidazo[1,2-a]pyridine with arenes. Tetrahedron Lett 55:1589–1592CrossRefGoogle Scholar
  64. 64.
    Banerji B, Chatterjee S, Chandrasekhar K, Bera S, Majumder L, Prodhan C, Chaudhuri K (2017) Expedient synthesis of a phenanthro-imidazo-pyridine fused heteropolynuclear framework via CDC coupling: a new class of luminophores. Org Biomol Chem 15:4130–4134PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Pereira KC, Porter AL, DeBoef B (2014) Intramolecular arylation of benzimidazoles via Pd(II)/Cu(I) catalyzed cross-dehydrogenative coupling. Tetrahedron Lett 55:1729–1732PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dong J, Long Z, Song F, Wu N, Guo Q, Lan J, You J (2013) Rhodium or ruthenium-catalyzed oxidative C-H/C-H cross-coupling: direct access to extended π-conjugated systems. Angew Chem Int Ed 52:580–584CrossRefGoogle Scholar
  67. 67.
    Liu H, Xu H, Yuan Y (2014) Rhodium-catalyzed direct oxidative cross-coupling of 2-aryl pyridine with benzothiazoles. Tetrahedron 70:6474–6481CrossRefGoogle Scholar
  68. 68.
    Kitahara M, Umeda N, Hirano K, Satoh T, Miura M (2011) copper-mediated intermolecular direct biaryl coupling. J Am Chem Soc 133:2160–2162PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Odani R, Hirano K, Satoh T, Miura M (2013) Copper-mediated dehydrogenative biaryl coupling of naphthylamines and 1,3-azoles. J Org Chem 78:11045–11052PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nishino M, Hirano K, Satoh T, Miura M (2013) Copper-mediated C-H/C-H biaryl coupling of benzoic acid derivatives and 1,3-azoles. Angew Chem Int Ed 52:4457–4461CrossRefGoogle Scholar
  71. 71.
    Shang Y, Jie X, Zhao H, Hu P, Su W (2014) Rh(III)-catalyzed amide-directed cross-dehydrogenative heteroarylation of pyridines. Org Lett 16:416–419PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Deng H, Li H, Wang L (2016) Ortho-heteroarylation of azobenzenes by Rh-catalyzed cross-dehydrogenative coupling: an approach to conjugated biaryls. Org Lett 18:3110–3113PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kianmehr E, Fardpour M, Kharat AN (2017) Palladium-catalyzed chemo- and regioselective oxidative cross-dehydrogenative coupling of acetanilides with benzothiazole. Eur J Org Chem 2017:3017–3021CrossRefGoogle Scholar
  74. 74.
    Bhunia SK, Polley A, Natarajan R, Jana R (2015) Through-space 1,4-palladium migration and 1,2-aryl shift: direct access to dibenzo[a,c]carbazoles through a triple C–H functionalization cascade. Chem Eur J 21:16786–16791CrossRefGoogle Scholar
  75. 75.
    Zou L-H, Mottweiler J, Priebbenow DL, Wang J, Stubenrauch JA, Bolm C (2013) Mild copper-mediated direct oxidative cross-coupling of 1,3,4-oxadiazoles with polyfluoroarenes by using dioxygen as oxidant. Chem Eur J 19:3302–3305CrossRefGoogle Scholar
  76. 76.
    Liu S, Tzschucke CC (2016) Palladium-catalyzed regioselective dehydrogenative C-H/C–H cross-coupling of pyrroles and pyridine N-oxides. Eur J Org Chem 2016:3509–3513CrossRefGoogle Scholar
  77. 77.
    Suresh R, Muthusubramanian S, Senthilkumaran R (2014) Regioselective cross-dehydrogenative coupling of indole-2-carboxylic acids and pyridine-N-oxides followed by protodecarboxylation. Synlett 25:2064–2066CrossRefGoogle Scholar
  78. 78.
    Gong X, Song G, Zhang H, Li X (2011) Palladium-catalyzed oxidative cross-coupling between pyridine N-oxides and indoles. Org Lett 13:1766–1769PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Willis NJ, Smith JM (2014) An operationally simple, palladium catalysed dehydrogenative cross-coupling reaction of pyridine N-oxides and thiazoles “on water”. RSC Adv 4:11059–11063CrossRefGoogle Scholar
  80. 80.
    Fu X-P, Xuan Q-Q, Liu L, Wang D, Chen Y-J, Li C-J (2013) Dual C-H activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. Tetrahedron 69:4436–4444CrossRefGoogle Scholar
  81. 81.
    Kianmehr E, Faghih N, Khan KM (2015) Palladium-catalyzed regioselective benzylation-annulation of pyridine N-oxides with toluene derivatives via multiple C-H bond activations: benzylation versus arylation. Org Lett 17:414–417PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kianmehr E, Rezaeefard M, Khalkhali MR, Khan KM (2014) Pd-catalyzed dehydrogenative cross-coupling of pyridine-N-oxides with uracils. RSC Adv 4:13764–13767CrossRefGoogle Scholar
  83. 83.
    Odani R, Hirano K, Satoh T, Miura M (2014) Copper-mediated C6-selective dehydrogenative heteroarylation of 2-pyridones with 1,3-azoles. Angew Chem Int Ed 53:10784–10788CrossRefGoogle Scholar
  84. 84.
    Yamada S, Murakami K, Itami K (2016) Regiodivergent cross-dehydrogenative coupling of pyridines and benzoxazoles: discovery of organic halides as regio-switching oxidants. Org Lett 18:2415–2418PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hong F, Chen Y, Lu B, Cheng J (2016) One-pot assembly of fused heterocycles via oxidative palladium-catalyzed cyclization of arylols and iodoarenes. Adv Synth Catal 358:353–357CrossRefGoogle Scholar
  86. 86.
    Cheng C, Chen W-W, Xu B, Xu M-H (2016) Access to indole-fused polyheterocycles via Pd-catalyzed base-free intramolecular cross dehydrogenative coupling. J Org Chem 81:11501–11507PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ren X, Wen P, Shi X, Wang Y, Li J, Yang S, Yan H, Huang G (2013) Palladium-catalyzed C-2 selective arylation of quinolines. Org Lett 15:5194–5197PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Chupakhin ON, Shchepochkin AV, Charushin VN (2017) Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C-C coupling reactions. Green Chem 19:2931–2935CrossRefGoogle Scholar
  89. 89.
    Utepova IA, Trestsova MA, Chupakhin ON, Charushin VN, Rempel AA (2015) Aerobic oxidative C-H/C–H coupling of azaaromatics with indoles and pyrroles in the presence of TiO2 as a photocatalyst. Green Chem 17:4401–4410CrossRefGoogle Scholar
  90. 90.
    Han Y-Y, Wu Z-J, Zhang X-M, Yuan W-C (2010) An efficient synthesis of 3-(indol-3-yl)quinoxaline-2-ones with TfOH-catalyzed Friedel-Crafts type coupling reaction in air. Tetrahedron Lett 51:2023–2028CrossRefGoogle Scholar
  91. 91.
    Noikham M, Kittikool T, Yotphan S (2018) Iodine-catalyzed oxidative cross-dehydrogenative coupling of quinoxalinones and indoles: synthesis of 3-(indol-2-yl)quinoxalin-2-one under mild and ambient conditions. Synthesis 50:2337–2346CrossRefGoogle Scholar
  92. 92.
    Azev YA, Ermakova OS, Berseneva VS, Bakulev VA, Ezhikova MA, Kodess MI (2017) Synthesis of fluoroquinoxalin-2(1H)-one derivatives containing substituents in the pyrazine and benzene fragments. Russ J Org Chem 53:90–95CrossRefGoogle Scholar
  93. 93.
    Chupakhin ON, Egorov IN, Rusinov VL, Slepukhin PA (2010) Asymmetric induction in the reactions of azinones with C-nucleophiles. Russ Chem Bull 59:991–1001CrossRefGoogle Scholar
  94. 94.
    Khalymbadzha IA, Fatykhov RF, Chupakhin ON, Charushin VN, Tseitler TA, Sharapov AD, Inytina AK, Kartsev VG (2018) Transition-metal-free C-C coupling of 5,7-dihydroxybenzopyrones with quinoxalones and pteridinones. Synthesis 50:2423–2431CrossRefGoogle Scholar
  95. 95.
    Borovlev IV, Demidov OP, Borovlev II, Saigakova NA (2013) 1,3,7-triazapyrene: the first case of hetarylation of benzene and its analogs. Chem Heterocycl Compd 49:952–954CrossRefGoogle Scholar
  96. 96.
    Borovlev IV, Demidov OP, Saigakova NA (2013) SNH arylation of 1,3,7-triazapyrenes in acidic aqueous solution. Chem Heterocycl Compd 49:618–623CrossRefGoogle Scholar
  97. 97.
    Khalymbadzha IA, Chupakhin ON, Fatykhov RF, Charushin VN, Schepochkin AV, Kartsev VG (2016) Transition-metal-free cross-dehydrogenative coupling of triazines with 5,7-dihydroxycoumarins. Synlett 27:2606–2610CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussian Federation
  2. 2.I. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of SciencesEkaterinburgRussian Federation

Personalised recommendations