Application of Electrochemical Cross-Dehydrogenative Couplings in the Syntheses of Heterocycles



Heterocycles are becoming ubiquitous in the modern chemistry nowadays. However, the synthesis of heterocycles remains challenging. Issues like simplicity, selectivity, environmental friendliness, and availability of starting materials are still key factors to be considered before planning for a synthesis. In the past three decades, the transition-metal-catalyzed cross-coupling and direct oxidative cross-coupling reactions have been commonly utilized for the construction of heterocycles. Although these strategies are efficient, the use of organic halides and organometallic reagents resulted in generating undesirable chemical wastes. Recently, cross-dehydrogenative coupling (CDC) or cross-coupling with hydrogen evolution has been recognized as a powerful tool for the synthesis and functionalization of heterocycles. The benefits of using electrochemical cross-dehydrogenative coupling method over conventional cross-couplings are the avoidance of reagent waste and the mild reaction conditions. The method maximizes atom efficiency by replacing stoichiometric redox reagents with electrical current. Majority of the electrochemical cross-dehydrogenative coupling reactions can be carried out at an ambient temperature. It is chemoselective and tolerates with many functional groups. In this chapter, an overview of the electrochemical CDC strategies for carrying out carbon–carbon (C–C), carbon–nitrogen (C–N), carbon–oxygen (C–O) bond formations as well as carbon–hydrogen (C–H) functionalization is presented with examples of reaction and mechanistic insight. This chapter is organized based on the aforementioned reaction types, and majority of information retrieved between those of 2000 and 2018 will hopefully serve as a useful reference to readers.


Electrochemical cross-dehydrogenative coupling Heterocycles Oxidative cross-coupling Green synthesis 


  1. 1.
    Meijere AD, Diederich FO (2004) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim; ChichesterCrossRefGoogle Scholar
  2. 2.
    Tang S, Zeng L, Lei AW (2018) Oxidative R-1-H/R-2-H cross-coupling with hydrogen evolution. J Am Chem Soc 140:13128–13135PubMedCrossRefGoogle Scholar
  3. 3.
    Miyaura N (2002) Cross-coupling reactions: a practical guide. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Gutz C, Klockner B, Waldvogel SR (2016) Electrochemical screening for electroorganic synthesis. Org Process Res Dev 20:26–32CrossRefGoogle Scholar
  5. 5.
    Li CJ (2009) Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42:335–344CrossRefGoogle Scholar
  6. 6.
    Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev 111:1215–1292PubMedCrossRefGoogle Scholar
  7. 7.
    Tang S, Liu YC, Lei AW (2018) Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4:27–45CrossRefGoogle Scholar
  8. 8.
    Meng QY, Zhong JJ, Liu Q, Gao XW, Zhang HH, Lei T, Li ZJ, Feng K, Chen B, Tung CH, Wu LZ (2013) A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. J Am Chem Soc 135:19052–19055PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Volke J, Liška FE (1994) Electrochemistry in organic synthesis. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  10. 10.
    Yan M, Kawamata Y, Baran PS (2017) Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev 117:13230–13319PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Karkas MD (2018) Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 47:5786–5865PubMedCrossRefGoogle Scholar
  12. 12.
    Riehl B, Dyballa KM, Franke R, Waldvogel SR (2017) Electro-organic synthesis as a sustainable alternative for dehydrogenative cross-coupling of phenols and naphthols. Synth Stuttg 49:252–259Google Scholar
  13. 13.
    Kirste A, Elsler B, Schnakenburg G, Waldvogel SR (2012) Efficient anodic and direct phenol-arene C, C cross-coupling: the benign role of water or methanol. J Am Chem Soc 134:3571–3576PubMedCrossRefGoogle Scholar
  14. 14.
    Horn EJ, Rosen BR, Chen Y, Tang JZ, Chen K, Eastgate MD, Baran PS (2016) Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533:77–81PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fry AJ (1989) Synthetic organic electrochemistry. Wiley, New YorkGoogle Scholar
  16. 16.
    Lund H (2002) A century of organic electrochemistry. J Electrochem Soc 149:S21–S33CrossRefGoogle Scholar
  17. 17.
    Kolbe H (1848) Zersetzung der Valeriansäure durch den elektrischen Strom. Justus Liebigs Ann Chem 64:339–341CrossRefGoogle Scholar
  18. 18.
    Kolbe H (1849) Untersuchungen über die Elektrolyse organischer Verbindungen. Justus Liebigs Annalen der Chemie 69:257–294CrossRefGoogle Scholar
  19. 19.
    Corey EJ, Sauers RR (1959) The Synthesis of Pentacyclosqualene (8,8′-Cycloönocerene) and the α- and β-Onoceradienes1. J Am Chem Soc 81:1739–1743CrossRefGoogle Scholar
  20. 20.
    le Blanc M (1900) Über einen Versuch zur Demonstration des elektrolytischen Lösungsdruckes. Zeitschrift für Elektrochemie 7:287–290CrossRefGoogle Scholar
  21. 21.
    Watkins BF, Behling JR, Kariv E, Miller LL (1975) Chiral electrode. J Am Chem Soc 97:3549–3550CrossRefGoogle Scholar
  22. 22.
    Shono T, Hamaguchi H, Matsumura Y (1975) Electroorganic chemistry. XX. Anodic oxidation of carbamates. J Am Chem Soc 97:4264–4268CrossRefGoogle Scholar
  23. 23.
    Yoshida J, Murata T, Isoe S (1986) Electrochemical oxidation of organosilicon compounds. 1. oxidative cleavage of carbon-silicon bond in allylsilanes and benzylsilanes. Tetrahedron Lett 27:3373–3376CrossRefGoogle Scholar
  24. 24.
    Yoshida J, Shimizu A, Hayashi R (2018) Electrogenerated cationic reactive intermediates: the pool method and further advances. Chem Rev 118:4702–4730PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sowell CG, Wolin RL, Little RD (1990) Electroreductive cyclization reactions—stereoselection, creation of quaternary centers in bicyclic frameworks, and a formal total synthesis of quadrone. Tetrahedron Lett 31:485–488CrossRefGoogle Scholar
  26. 26.
    Little RD, Schwaebe MK (1997) Reductive cyclizations at the cathode. Electroorg Synth: Bond Form Anode Cathode 185:1–48Google Scholar
  27. 27.
    Zhao HB, Liu ZJ, Song JS, Xu HC (2017) Reagent-Free C–H/N–H cross-coupling: regioselective synthesis of N-heteroaromatics from biaryl aldehydes and NH3. Angew Chem Int Ed 56:12732–12735CrossRefGoogle Scholar
  28. 28.
    Xiong P, Xu HH, Xu HC (2017) Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes. J Am Chem Soc 139:2956–2959PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wang P, Tang S, Huang PF, Lei AW (2017) Electrocatalytic oxidant-free dehydrogenative C–H/S–H cross-coupling. Angew Chem-Int Ed 56:3009–3013CrossRefGoogle Scholar
  30. 30.
    Horn EJ, Rosen BR, Baran PS (2016) Synthetic organic electrochemistry: an enabling and innately sustainable method. Acs Central Science 2:302–308PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wiebe A, Riehl B, Lips S, Franke R, Waldvogel SR (2017) Unexpected high robustness of electrochemical cross-coupling for a broad range of current density. Sci Adv 3:eaao3920PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yang Q, Zhang L, Ye C, Luo S, Wu LZ, Tung CH (2017) Visible-light-promoted asymmetric cross-dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis. Angew Chem Int Ed 56:3694–3698CrossRefGoogle Scholar
  33. 33.
    Baslé O, Borduas N, Dubois P, Chapuzet JM, Chan TH, Lessard J, Li CJ (2010) Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid. Chem Eur J 16:8162–8166PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhao Y-L, Wang Y, Luo Y-C, Fu X-Z, Xu P-F (2015) Asymmetric C–H functionalization involving organocatalysis. Tetrahedron Lett 56:3703–3714CrossRefGoogle Scholar
  35. 35.
    Zhang F-L, Hong K, Li T-J, Park H, Yu J-Q (2016) Functionalization of C (sp3)–H bonds using a transient directing group. Science 351:252–256PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yang K, Li Q, Liu Y, Li G, Ge H (2016) Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand. J Am Chem Soc 138:12775–12778PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fu N, Li L, Yang Q, Luo S (2017) Catalytic asymmetric electrochemical oxidative coupling of tertiary amines with simple ketones. Org Lett 19:2122–2125PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Shono T, Matsumura Y, Tsubata K (1981) Electroorganic chemistry. 46. A new carbon-carbon bond forming reaction at the. alpha.-position of amines utilizing anodic oxidation as a key step. J Am Chem Soc 103:1172–1176CrossRefGoogle Scholar
  39. 39.
    Li W, Moeller KD (1996) Conformationally restricted TRH analogs: the compatibility of a 6, 5-bicyclic lactam-based mimetic with binding to TRH-R. J Am Chem Soc 118:10106–10112CrossRefGoogle Scholar
  40. 40.
    Mori M, Kagechika K, Sasai H, Shibasaki M (1991) New synthesis of 4-acetoxy-2-azetidinones by use of electrochemical oxidation. Tetrahedron 47:531–540CrossRefGoogle Scholar
  41. 41.
    Yoshida J-I, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K (1999) Direct oxidative carbon–carbon bond formation using the “cation pool” method. 1. generation of iminium cation pools and their reaction with carbon nucleophiles. J Am Chem Soc 121:9546–9549CrossRefGoogle Scholar
  42. 42.
    Pandey G, Banerjee P, Gadre SR (2006) Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem Rev 106:4484–4517PubMedCrossRefGoogle Scholar
  43. 43.
    Stanley LM, Sibi MP (2008) Enantioselective copper-catalyzed 1, 3-dipolar cycloadditions. Chem Rev 108:2887–2902PubMedCrossRefGoogle Scholar
  44. 44.
    Tang S, Liu K, Long Y, Gao X, Gao M, Lei A (2015) Iodine-catalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. Org Lett 17:2404–2407PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tang S, Gao X, Lei A (2016) Decarboxylative (4+1) oxidative annulation of malonate monoesters with 2-vinylpyridine derivatives. Adv Synth Catal 358:2878–2882CrossRefGoogle Scholar
  46. 46.
    Tang S, Gao X, Lei A (2017) Electrocatalytic intramolecular oxidative annulation of N-aryl enamines into substituted indoles mediated by iodides. Chem Commun 53:3354–3356CrossRefGoogle Scholar
  47. 47.
    Wu ZJ, Xu HC (2017) Synthesis of C3-fluorinated oxindoles through reagent-free cross-dehydrogenative coupling. Angew Chem 129:4812–4816CrossRefGoogle Scholar
  48. 48.
    Zhu L, Xiong P, Mao ZY, Wang YH, Yan X, Lu X, Xu HC (2016) Electrocatalytic generation of amidyl radicals for olefin hydroamidation: use of solvent effects to enable anilide oxidation. Angew Chem Int Ed 55:2226–2229CrossRefGoogle Scholar
  49. 49.
    Hou ZW, Mao ZY, Zhao HB, Melcamu YY, Lu X, Song J, Xu HC (2016) Electrochemical C–H/N–H functionalization for the synthesis of highly functionalized (Aza) indoles. Angew Chem Int Ed 55:9168–9172CrossRefGoogle Scholar
  50. 50.
    Mihelcic J, Moeller KD (2003) Anodic cyclization reactions: the total synthesis of alliacol A. J Am Chem Soc 125:36–37PubMedCrossRefGoogle Scholar
  51. 51.
    Mihelcic J, Moeller KD (2004) Oxidative cyclizations: The asymmetric synthesis of (−)-alliacol A. J Am Chem Soc 126:9106–9111PubMedCrossRefGoogle Scholar
  52. 52.
    Collet F, Dodd RH, Dauban P (2009) Catalytic C–H amination: recent progress and future directions. Chem Commun 34:5061–5074CrossRefGoogle Scholar
  53. 53.
    Suzuki C, Hirano K, Satoh T, Miura M (2015) Direct synthesis of N–H carbazoles via iridium (III)-catalyzed intramolecular C–H amination. Org Lett 17:1597–1600PubMedCrossRefGoogle Scholar
  54. 54.
    Nath AR, Yehye WA (2018) Acid hydrazide: a potential reagent for the synthesis of semicarbazones. Synthesis 50:4301–4312CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Xia W (2018) Recent advances in radical-based C–N bond formation via photo-/electrochemistry. Chem Soc Rev 47:2591–2608PubMedCrossRefGoogle Scholar
  56. 56.
    Lennartz M, Sadakane M, Steckhan E (1999) Electrochemical oxidation of (R)-4-hydroxy-2-pyrrolidone: a key building block for stereoselective N-acyliminium ion coupling reactions. Tetrahedron 55:14407–14420CrossRefGoogle Scholar
  57. 57.
    Jones AM, Banks CE (2014) The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions. Beilstein J Org Chem 10:3056–3072PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kabeshov MA, Musio B, Murray PR, Browne DL, Ley SV (2014) Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology. Org Lett 16:4618–4621PubMedCrossRefGoogle Scholar
  59. 59.
    Gong M, Huang JM (2016) Electrochemical oxidative C-H/N–H coupling between γ-lactams and anilines. Chem Eur J 22:14293–14296PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang L, Su J-H, Wang S, Wan C, Zha Z, Du J, Wang Z (2011) Direct electrochemical imidation of aliphatic amines via anodic oxidation. Chem Commun 47:5488–5490CrossRefGoogle Scholar
  61. 61.
    Gao W-J, Li W-C, Zeng C-C, Tian H-Y, Hu L-M, Little RD (2014) Electrochemically initiated oxidative amination of benzoxazoles using tetraalkylammonium halides as redox catalysts. J Org Chem 79:9613–9618PubMedCrossRefGoogle Scholar
  62. 62.
    Liang S, Zeng C-C, Tian H-Y, Sun B-G, Luo X-G, Ren F-Z (2016) Electrochemically oxidative α-C–H functionalization of ketones: a cascade synthesis of α-amino ketones mediated by NH4I. J Org Chem 81:11565–11573PubMedCrossRefGoogle Scholar
  63. 63.
    Qiu Y, Struwe J, Meyer TH, Oliveira JCACA, Ackermann L (2018) Catalyst-and reagent-free electrochemical azole C-H amination. Chem Eur J 24:12784PubMedCrossRefGoogle Scholar
  64. 64.
    Sauermann N, Mei R, Ackermann L (2018) Electrochemical C–H amination by cobalt catalysis in a renewable solvent. Angew Chem Int Ed 57:5090–5094CrossRefGoogle Scholar
  65. 65.
    Gao X, Wang P, Zeng L, Tang S, Lei A (2018) Cobalt (II)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J Am Chem Soc 140:4195–4199PubMedCrossRefGoogle Scholar
  66. 66.
    Tang S, Wang S, Liu Y, Cong H, Lei A (2018) Electrochemical oxidative C–H amination of phenols: access to triarylamine derivatives. Angew Chem 130:4827–4831CrossRefGoogle Scholar
  67. 67.
    Morofuji T, Shimizu A, Yoshida J-I (2015) Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics. J Am Chem Soc 137:9816–9819PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Z, Su J, Zha Z, Wang Z (2013) Electrochemical synthesis of the aryl α-ketoesters from acetophenones mediated by KI. Chem Eur J 19:17711–17714PubMedCrossRefGoogle Scholar
  69. 69.
    Xu K, Zhang Z, Qian P, Zha Z, Wang Z (2015) Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source. Chem Commun 51:11108–11111CrossRefGoogle Scholar
  70. 70.
    Li Y, Gao H, Zhang Z, Qian P, Bi M, Zha Z, Wang Z (2016) Electrochemical synthesis of α-enaminones from aryl ketones. Chem Commun 52:8600–8603CrossRefGoogle Scholar
  71. 71.
    Broese T, Francke R (2016) Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based on Ionically Tagged Phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol. Org Lett 18:5896–5899PubMedCrossRefGoogle Scholar
  72. 72.
    Wu J, Zhou Y, Zhou Y, Chiang C-W, Lei A (2017) Electro-oxidative C (sp3)–H amination of azoles via intermolecular oxidative C (sp3)–H/N–H cross-coupling. ACS Catal 7:8320–8323CrossRefGoogle Scholar
  73. 73.
    Siu T, Yudin AK (2002) Practical olefin aziridination with a broad substrate scope. J Am Chem Soc 124:530–531PubMedCrossRefGoogle Scholar
  74. 74.
    Siu T, Picard CJ, Yudin AK (2005) Development of electrochemical processes for nitrene generation and transfer. J Org Chem 70:932–937PubMedCrossRefGoogle Scholar
  75. 75.
    Chen J, Yan W-Q, Lam CM, Zeng C-C, Hu L-M, Little RD (2015) Electrocatalytic aziridination of alkenes mediated by n-Bu4NI: a radical pathway. Org Lett 17:986–989PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nicolaou K, Baran P, Zhong Y-L, Barluenga S, Hunt K, Kranich R, Vega J (2002) Iodine (V) reagents in organic synthesis. Part 3. New routes to heterocyclic compounds via o-iodoxybenzoic acid-mediated cyclizations: generality, scope, and mechanism. J Am Chem Soc 124:2233–2244PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang Y-F, Chen H, Zhu X, Chiba S (2012) Copper-catalyzed aerobic aliphatic C–H oxygenation directed by an amidine moiety. J Am Chem Soc 134:11980–11983PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Miller DC, Choi GJ, Orbe HS, Knowles RR (2015) Catalytic olefin hydroamidation enabled by proton-coupled electron transfer. J Am Chem Soc 137:13492–13495PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Xiong P, Xu H-H, Xu H-C (2017) Metal-and reagent-free intramolecular oxidative amination of tri-and tetrasubstituted alkenes. J Am Chem Soc 139:2956–2959PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hou Z-W, Mao Z-Y, Song J, Xu H-C (2017) Electrochemical synthesis of polycyclic N-heteroaromatics through cascade radical cyclization of diynes. ACS Catal 7:5810–5813CrossRefGoogle Scholar
  81. 81.
    Zhao HB, Hou ZW, Liu ZJ, Zhou ZF, Song J, Xu HC (2017) Amidinyl radical formation through anodic N–H bond cleavage and its application in aromatic C–H bond functionalization. Angew Chem Int Ed 56:587–590CrossRefGoogle Scholar
  82. 82.
    Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C (2018) Electrochemical formation of N-acyloxy amidyl radicals and their application: regioselective intramolecular amination of sp2 and sp3 C-H bonds. Organ Lett 4:3443CrossRefGoogle Scholar
  83. 83.
    Zhao HB, Liu ZJ, Song J, Xu HC (2017) Reagent-free C–H/N–H cross-coupling: regioselective synthesis of N-heteroaromatics from biaryl aldehydes and NH3. Angew Chem Int Ed 56:12732–12735CrossRefGoogle Scholar
  84. 84.
    Qian P, Su J-H, Wang Y, Bi M, Zha Z, Wang Z (2017) Electrocatalytic C-H/N–H coupling of 2′-aminoacetophenones for the synthesis of isatins. J Org Chem 82:6434–6440PubMedCrossRefGoogle Scholar
  85. 85.
    Liang S, Zeng C-C, Luo X-G, Ren F-Z, Tian H-Y, Sun B-G, Little RD (2016) Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu 4 NI induced C–N followed by a C–O bond formation cascade for the synthesis of indolines. Green Chem 18:2222–2230CrossRefGoogle Scholar
  86. 86.
    Gieshoff T, Schollmeyer D, Waldvogel SR (2016) Access to Pyrazolidin-3, 5-diones through Anodic N–N Bond Formation. Angew Chem Int Ed 55:9437–9440CrossRefGoogle Scholar
  87. 87.
    Shono T, Matsumura Y, Tsubata K, Sugihara Y, Yamane S, Kanazawa T, Aoki T (1982) Electroorganic chemistry. 60. Electroorganic synthesis of enamides and enecarbamates and their utilization in organic synthesis. J Am Chem Soc 104:6697–6703CrossRefGoogle Scholar
  88. 88.
    Shono T (1988) Synthesis of alkaloidal compounds using an electrochemical reaction as a key step. Springer, Electrochemistry IIICrossRefGoogle Scholar
  89. 89.
    Alfonso-Súarez P, Kolliopoulos AV, Smith JP, Banks CE, Jones AM (2015) An experimentalist’s guide to electrosynthesis: the Shono oxidation. Tetrahedron Lett 56:6863–6867CrossRefGoogle Scholar
  90. 90.
    Palasz PD, Utley JH, Hardstone JD (1984) Electro-organic reactions. Part 23. Regioselectivity and the stereochemistry of anodic methoxylation of N-acylpiperidines and N-acylmorpholines. J Chem Soc, Perkin Trans 2:807–813CrossRefGoogle Scholar
  91. 91.
    Shono T, Matsumura Y, Tsubata K (1985a) Anodic oxidation of N‐carbomethoxypyrrolidine: 2‐Methoxy‐N‐carbomethoxypyrrolidine. Organic Syntheses 206–206Google Scholar
  92. 92.
    Shono T, Matsumura Y, Inoue K (1983) Electroorganic chemistry. 71. Anodic. alpha.-methoxylation of N-carbomethoxylated or N-acylated. alpha.-amino acid esters and. alpha.-amino-. beta.-lactams. J Org Chem 48:1388–1389CrossRefGoogle Scholar
  93. 93.
    Baba D, Fuchigami T (2003) Anodic methoxylation and acetoxylation of imines and imidates. Tetrahedron Lett 44:3133–3136CrossRefGoogle Scholar
  94. 94.
    Frankowski KJ, Liu R, Milligan GL, Moeller KD, Aubé J (2015) Practical electrochemical anodic oxidation of polycyclic lactams for late stage functionalization. Angew Chem Int Ed 54:10555–10558CrossRefGoogle Scholar
  95. 95.
    Reuter C, Huy P, Neudörfl JM, Kühne R, Schmalz HG (2011) Exercises in pyrrolidine chemistry: gram scale synthesis of a pro–pro dipeptide mimetic with a polyproline type II helix conformation. Chem Eur J 17:12037–12044PubMedCrossRefGoogle Scholar
  96. 96.
    Liu K, Tang S, Huang P, Lei A (2017) External oxidant-free electrooxidative [3+2] annulation between phenol and indole derivatives. Nat Commun 8:775PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chiba K, Fukuda M, Kim S, Kitano Y, Tada M (1999) Dihydrobenzofuran synthesis by an anodic [3+2] cycloaddition of phenols and unactivated alkenes. J Org Chem 64:7654–7656CrossRefGoogle Scholar
  98. 98.
    Imada Y, Yamaguchi Y, Shida N, Okada Y, Chiba K (2017) Entropic electrolytes for anodic cycloadditions of unactivated alkene nucleophiles. Chem Commun 53:3960–3963CrossRefGoogle Scholar
  99. 99.
    Chiba K, Jinno M, Kuramoto R, Tada M (1998) Stereoselective Diels-Alder reaction of electrogenerated quinones on a PTFE-fiber coated electrode in lithium perchlorate/nitromethane. Tetrahedron Lett 39:5527–5530CrossRefGoogle Scholar
  100. 100.
    Sutterer A, Moeller KD (2000) Reversing the polarity of enol ethers: an anodic route to tetrahydrofuran and tetrahydropyran rings. J Am Chem Soc 122:5636–5637CrossRefGoogle Scholar
  101. 101.
    Xu H-C, Moeller KD (2010) Intramolecular anodic olefin coupling reactions and the synthesis of cyclic amines. J Am Chem Soc 132:2839–2844PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Xu H-C, Moeller KD (2008) Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group. J Am Chem Soc 130:13542–13543PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Xu H-C, Campbell JM, Moeller KD (2013) Cyclization reactions of anode-generated amidyl radicals. J Org Chem 79:379–391PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Zhang S, Lian F, Xue M, Qin T, Li L, Zhang X, Xu K (2017) Electrocatalytic dehydrogenative esterification of aliphatic carboxylic acids: access to bioactive lactones. Org Lett 19:6622–6625PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tao XZ, Dai JJ, Zhou J, Xu J, Xu HJ (2018) Electrochemical C-O bond formation: facile access to aromatic lactones. Chem Eur J 24:6932–6935PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Moeller KD, Sharif T (1989) Electrochemical amide oxidations in the presence of monomethoxylated phenyl rings. An unexpected relationship between the chemoselectivity of the oxidation and the location of the methoxy substituent. Tetrahedron Lett 30:1213–1216CrossRefGoogle Scholar
  107. 107.
    Endoma MA, Butora G, Claeboe CD, Hudlicky T, Abboud KA (1997) Chemoenzymatic and electrochemical oxidations in the synthesis of octahydroisoquinolines for conversion to morphine. Relative merits of radical vs. acid-catalyzed cyclizations. Tetrahedron Lett 38:8833–8836CrossRefGoogle Scholar
  108. 108.
    Okimoto M, Yoshida T, Hoshi M (2006) Electrooxidative cyclization of hydroquinolyl alcohols. Heterocycles 68:2563–2570CrossRefGoogle Scholar
  109. 109.
    Okimoto M, Yoshida T, Hoshi M, Hattori K, Komata M, Numata K, Tomozawa K (2007) Electrooxidative cyclization of hydroquinolyl alcohols, hydroquinolylamines, and dimethyl aminomalonates. Aust J Chem 60:236–242CrossRefGoogle Scholar
  110. 110.
    Okimoto M, Ohashi K, Yamamori H, Nishikawa S, Hoshi M, Yoshida T (2012) Electrooxidative cyclization of hydroxyamino compounds possessing a benzyl group. Synthesis 44:1315–1322CrossRefGoogle Scholar
  111. 111.
    Li WC, Zeng CC, Hu LM, Tian HY, Little RD (2013) Efficient indirect electrochemical synthesis of 2-substituted benzoxazoles using sodium iodide as mediator. Adv Synth Catal 355:2884–2890CrossRefGoogle Scholar
  112. 112.
    Ma H-Y, Zha Z-G, Zhang Z-L, Meng L, Wang Z-Y (2013) Electrosynthesis of oxadiazoles from benzoylhydrazines. Chin Chem Lett 24:780–782CrossRefGoogle Scholar
  113. 113.
    Li X, Xu X, Zhou C (2012) Tetrabutylammonium iodide catalyzed allylic sulfonylation of α-methyl styrene derivatives with sulfonylhydrazides. Chem Commun 48:12240–12242CrossRefGoogle Scholar
  114. 114.
    Röse P, Emge S, Yoshida J-I, Hilt G (2015) Electrochemical selenium-and iodonium-initiated cyclisation of hydroxy-functionalised 1, 4-dienes. Beilstein J Org Chem 11:174PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Gao X, Yuan G, Chen H, Jiang H, Li Y, Qi C (2013) Efficient conversion of CO2 with olefins into cyclic carbonates via a synergistic action of I2 and base electrochemically generated in situ. Electrochem Commun 34:242–245CrossRefGoogle Scholar
  116. 116.
    Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR (2017) Electrochemical synthesis of benzoxazoles from anilides - a new approach to employ amidyl radical intermediates. Chem Commun 53:2974–2977CrossRefGoogle Scholar
  117. 117.
    Shono T, Matsumura Y, Uchida K, Kobayashi H (1985) A new [3+3]-type annelation useful for the formation of piperidine skeletons. J Org Chem 50:3243–3245CrossRefGoogle Scholar
  118. 118.
    Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A (2015) Tuning radical reactivity using iodine in oxidative C (sp 3)–H/C (sp)–H cross-coupling: an easy way toward the synthesis of furans and indolizines. Chem Commun 51:8769–8772CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Nanotechnology and Catalysis Research Centre, University of MalayaKuala LumpurMalaysia
  2. 2.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations