Skip to main content

Microbial Degradation of Phenolic Compounds

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 16))

Abstract

Human beings use various synthetic products in day-to-day life. The vigorous manufacturing process needs various chemical compounds with different functional groups. Hence, due to human activities several of such molecules (including phenol and its derivatives) were continuously present in the environmental surroundings which have been detected by advanced analytical tools. On the other hand, several reports revealed that most of these contaminants were toxic/hazardous in nature and some of them have consist carcinogenic and mutagenic properties. Hence, many of such contaminants including phenolic compounds were listed in United States Environmental Protection Agency list. For this reason, several researchers took a major step with the aim of detoxification/degradation of such contaminants by various treatment techniques (including biological methods) around the world. Considering this, here, we discuss some of these chemical contaminations and toxic effects and also their degradation/removal by microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    Article  CAS  PubMed  Google Scholar 

  • Aneez Ahamed PY, Kunhi AAM (1996) Degradation of phenol through ortho-cleavage pathway by Pseudomonas stutzeri strain SPC2. Lett Appl Microbiol 22:26–29

    Article  Google Scholar 

  • Aneez Ahamed PY, Kunhi AAM, Divakar S (2001) New metabolic pathway for o-cresol degradation by Pseudomonas sp. CP4 as evidenced by 1H NMR spectroscopic studies. World J Microbiol Biotechnol 17:371–377

    Article  Google Scholar 

  • Anku WW, Mamo MA, Govender PP (2017) Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In: Soto-Hernandez M, Palma-Tenango M, Garcia-Mateos MR (eds) Phenolic compounds-natural sources importance and applications, 1st edn. InTech, Zagrep, pp 419–443

    Google Scholar 

  • Antai SP, Crawford DL (1983) Degradation of phenol by Streptomyces setonii. Can J Microbiol 29:142–143

    Article  CAS  Google Scholar 

  • Arora PK, Bae HS (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Factories 13:31

    Article  CAS  Google Scholar 

  • Atlow SC, Bonadonna-Aparo L, Klibanov AM (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnol Bioeng 26:599–603

    Article  CAS  PubMed  Google Scholar 

  • Bae HS, Lee JM, Kim YB, Lee ST (1996a) Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation 7(6):463–469

    Article  CAS  PubMed  Google Scholar 

  • Bae HS, Lee JM, Lee ST (1996b) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145:125–129

    Article  CAS  PubMed  Google Scholar 

  • Bayly RC, Dagley S, Gibson DT (1966) The metabolism of cresols by species of Pseudomonas. Biochem J 101:293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerketorp J, Roling WFM, Feng XM, Garcia AH, Heipieper HJ, Hakansson S (2018) Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation. Appl Microbiol Biotechnol 102:2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers R, Sudholter EJ, Zuilhof H (2010) Hydrogen bonding in phosphine oxide/phosphate-phenol complexes. ChemPhysChem 11:2230–2240

    Article  CAS  PubMed  Google Scholar 

  • Dagley S, Patel MD (1957) Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem J 66:227–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Vargas JR, Navarro-Rodriguez JA, de Heredia JB, Cuerda-Correa EM (2009) Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions. J hazard mater 169:302–308

    Article  CAS  PubMed  Google Scholar 

  • Edalli VA, Mulla SI, Eqani SAMAS, Mahadevan GD, Sharma R, Shouche Y, Kamanavalli CM (2016) Evaluation of p-cresol degradation with polyphenoloxidase (PPO) immobilized in various matrices. 3 Biotech 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Edalli VA, Patil KS, Le VV, Mulla SI (2018) An overview of aniline and chloroaniline compounds as environmental significances. Bioeng Biosci 1: SBB.000519.2018

    Google Scholar 

  • Ehrlich GG, Godsy EM, Goerlitz DF, Hultz MF (1983) Microbial ecology of a creosoate-contaminated aquifer at St. Louis park, Minnesota. Dev Ind Microbiol 24:235–245

    CAS  Google Scholar 

  • El-Sayed WS, Ismaeil M, El-Beih F (2009) Isolation of 4-chlorophenol-degrading bacteria, Bacillus Subtilis OS1 and Alcaligeges sp. OS2 from petroleum oil-contaminated soil and characterization of its catabolic pathway. Aust J Basic Appl Sci 3:776–783

    CAS  Google Scholar 

  • Fava F, Armenante PM, Kafkewitz D (1995) Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lett Appl Microbiol 21:307–312

    Article  CAS  PubMed  Google Scholar 

  • Fewson CA (1981) Biodegradation of aromatics with industrial relevance. In: Leisinger T, Cook AM, Hutter R, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press London, pp 141–179

    Google Scholar 

  • Finkel'shtein ZI, Baskunov BP, Golovlev EL, Moiseeva OV, Vervoort J, Rietjens I, Golovleva LA (2000) Dependence of transformation of chlorophenols by Rhodococci on position and number of chlorine atoms in the aromatic ring. Mikrobiologiia 69:49–57

    CAS  PubMed  Google Scholar 

  • Flyvbjerg J, Jorgensen C, Arvin E, Jensen BK, Olsen SK (1993) Biodegradation of ortho-cresol by a mixed culture of nitrate-reducing bacteria growing on toluene. Appl Environ Microbiol 59:2286–2292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fountoulakis MS, Dokianakis SN, Kornaros ME, Aggelis GG, Lyberatos G (2002) Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res 36:4735–4744

    Article  CAS  PubMed  Google Scholar 

  • Franchi O, Bovio P, Ortega-Martinez E, Rosenkranz F, Chamy R (2018a) Active and total microbial community dynamics and the role of functional genes bamA and mcrA during anaerobic digestion of phenol and p-cresol. Bioresour Technol 264:290–297

    Article  CAS  PubMed  Google Scholar 

  • Franchi O, Rosenkranz F, Chamy R (2018b) Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula. Electron J Biotechnol 35:33–38

    Article  CAS  Google Scholar 

  • Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernandez-Alba AR (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78

    Article  CAS  PubMed  Google Scholar 

  • Goerlitz DF, Troutman DE, Godsy EM, Franks BJ (1985) Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida. Environ Sci Technol 19:955–961

    Article  CAS  Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1991) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

    Article  CAS  PubMed  Google Scholar 

  • Gurujeyalakshmi G, Oriel P (1989) Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haggblom M (1990) Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol 30(2):115–141

    Article  CAS  PubMed  Google Scholar 

  • Heyl A, Jörissen J (2006) Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology. J Appl Electrochem 36:1281–1290

    Article  CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1995) Cometabolic degradation of o-cresol and 2,6-dimethylphenol by Penicillium frequentans Bi 712. J Basic Microbiol 5:303–313

    Article  Google Scholar 

  • Hollender J, Hopp J, Dott W (2000) Cooxidation of chloro- and methylphenols by Alcaligenes xylosoxidans JH1. World J Microbiol Biotechnol 16:445–450

    Article  CAS  Google Scholar 

  • Hopper DJ (1978) Incorporation of [18O]water in the formation of p-hydroxybenzyl alcohol by the p-cresol methylhydroxylase from Pseudomonas putida. Biochem J 175:345–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopper DJ, Taylor DG (1975) Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. J Bacteriol 122:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskeri RS, Mulla SI, Shouche YS, Ninnekar HZ (2011) Biodegradation of 4-chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC. Biodegradation 22:509–516

    Article  CAS  PubMed  Google Scholar 

  • Hoskeri RS, Mulla SI, Ninnekar HZ (2014) Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatal Agric Biotechnol 3:390–396

    Article  Google Scholar 

  • Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG (2013) Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci World J 2013:460215

    Google Scholar 

  • Im WT, Bae HS, Yokota A, Lee ST (2004) Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Arshad M, Hashmi I, Karthikeyan R, Gentry TJ, Schwab AP (2018) Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environ Technol 39:1705–1714

    Article  CAS  PubMed  Google Scholar 

  • Jogdand SN (2003) Environmental biotechnology (industrial pollution management). Himalaya Publishing House, Mumbai

    Google Scholar 

  • Jones KH, Trudgill PW, Hopper DJ (1993) Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl Environ Microbiol 59:1125–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KH, Trudgill PW, Hopper DJ (1995) Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus. Arch Microbiol 163:176–181

    Article  CAS  PubMed  Google Scholar 

  • Justino C, Marques AG, Rodrigues D, Silva L, Duarte AC, Rocha-Santos T, Freitas AC (2011) Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study. Biodegradation 22:267–274

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Hassanshahian M (2016) Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Braz J Microbiol 47:18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha V, Palanivelu K (2005) Destruction of cresols by Fenton oxidation process. Water Res 39:3062–3072

    Article  CAS  PubMed  Google Scholar 

  • Ke Q, Zhang Y, Wu X, Su X, Wang Y, Lin H, Mei R, Hashmi MZ, Chen C, Chen J (2018) Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J Environ Manag 222:185–189

    Article  CAS  Google Scholar 

  • Knackmuss HJ, Hellwig M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13. Arch Microbiol 117:1–7

    Article  CAS  PubMed  Google Scholar 

  • Krishnan SN, Nayarisseri A, Rajamanickam U (2018) Biodegradation effects of o-cresol by Pseudomonas monteilii SHY on mustard seed germination. Bioinformation 14(6):271–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwean OS, Cho SY, Yang JW, Cho W, Park S, Lim Y, Shin MC, Kim HS, Park J (2018) 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite. Bioresour Technol 259:268–275

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao X, Zhang X, Wu D, Leng S (2018) Biodegradation of 17beta-estradiol by bacterial co-culture isolated from manure. Sci Rep 8:3787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S (2016) Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health 13:300

    Article  PubMed Central  CAS  Google Scholar 

  • Londry KL, Fedorak PM, Suflita JM (1997) Anaerobic degradation of m-cresol by a sulfate-reducing bacterium. Appl Environ Microbiol 63:3170–3175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Londry KL, Suflita JM, Tanner RS (1999) Cresol metabolism by the sulfate-reducing bacterium Desulfotomaculum sp. strain Groll. Can J Microbiol 45:458–463

    Article  CAS  PubMed  Google Scholar 

  • Loo YM, Lim PE, Seng CE (2010) Treatment of p-nitrophenol in an adsorbent-supplemented sequencing batch reactor. Environ Technol 31:479–487

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen T, Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol 57:2453–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahiudddin M, Fakhruddin AN, Abdullah Al M (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol 2012:741820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Männistö MK, Tiirola MA, Puhakka JA (2001) Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301

    Article  PubMed  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents Part I. Organic matter degradation by chemical and biological processes--an overview. Environ Int 31:289–295

    Article  CAS  PubMed  Google Scholar 

  • Megadi VB, Tallur PN, Mulla SI, Ninnekar HZ (2010) Bacterial degradation of fungicide captan. J Agric Food Chem 58:12863–12868

    Article  CAS  PubMed  Google Scholar 

  • Menke B, Rehm HJ (1992) Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl Microbiol Biotechnol 37:655–661

    Article  CAS  Google Scholar 

  • Mohn WW, Kennedy KJ (1992) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl Environ Microbiol 58:1367–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseeva OV, Belova OV, Solyanikova IP, Schlomann M, Golovleva LA (2001) Enzymes of a new modified ortho-pathway utilizing 2-chlorophenol in Rhodococcus opacus 1CP. Biochem Biokhimiia 66:548–555

    Article  CAS  Google Scholar 

  • Moiseeva OV, Solyanikova IP, Kaschabek SR, Groning J, Thiel M, Golovleva LA, Schlomann M (2002) A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 184(19):5282–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsen A, Rehm HJ (1990) Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl Microbiol Biotechnol 33:206–212

    Article  Google Scholar 

  • Mulla SI, Hoskeri RS, Shouche YS, Ninnekar HZ (2011a) Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22:95–102

    Article  CAS  PubMed  Google Scholar 

  • Mulla SI, Manjunatha TP, Hoskeri RS, Tallur PN, Ninnekar HZ (2011b) Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World J Microbiol Biotechnol 27:1587–1592

    Article  CAS  Google Scholar 

  • Mulla SI, Talwar MP, Hoskeri RS, Ninnekar HZ (2012) Enhanced degradation of 3-nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4. Biotechnol Bioproc E 17:1294–1299

    Article  CAS  Google Scholar 

  • Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2013) Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere 90:1920–1924

    Article  CAS  PubMed  Google Scholar 

  • Mulla SI, Talwar MP, Ninnekar HZ (2014) Bioremediation of 2,4,6-Trinitrotoluene explosive residues. In: Singh SN (ed) Biological remediation of explosive residues. Environmental Science and Engineering. Springer, Cham, pp 201–233

    Chapter  Google Scholar 

  • Mulla SI, Hu A, Wang Y, Sun Q, Huang SL, Wang H, Yu CP (2016a) Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C. Chemosphere 144:292–296

    Article  CAS  PubMed  Google Scholar 

  • Mulla SI, Sun Q, Hu A, Wang Y, Ashfaq M, Eqani SA, Yu CP (2016b) Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One 11:e0165013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016c) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani S, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a Gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech 7:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulla SI, Hu A, Sun Q, Li J, Suanon F, Ashfaq M, Yu CP (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102

    Article  CAS  Google Scholar 

  • Muller JA, Galushko AS, Kappler A, Schink B (2001) Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum. J Bacteriol 183:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutzel A, Reinsecheid UM, Antranikian G, Muller R (1996) Isolation and characterization of a thermophilic bacillus strain, that degrades phenol and cresols as sole carbon source at 70 °C. Appl Microbiol Biotechnol 46:593–596

    Article  CAS  Google Scholar 

  • Nedal M, Sobhi B, Isam S (2007) Effect of adsorption and bead size of immobilized biomass on the rate of biodegradation of phenol at high concentration levels. Ind Eng Chem Res 46:6820–6824

    Article  CAS  Google Scholar 

  • Neujahr HY, Gaal A (1973) Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem 35:386–400

    Article  CAS  PubMed  Google Scholar 

  • Neujahr HY, Varga JM (1970) Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. Eur J Biochem 13:37–44

    Article  CAS  PubMed  Google Scholar 

  • Neujahr HY, Lindsjo S, Varga JM (1974) Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis. Antonie Van Leeuwenhoek 40:209–216

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Padilla L, Matus V, Zenteno P, Gonzalez B (2000) Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J Basic Microbiol 40:243–249

    Article  CAS  PubMed  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Prabu PC, Udayasoorian C (2005) Biodecolorization of phenolic paper mill effluent by ligninolytic fungus Trametes versicolor. J Biol Sci 5:558–561

    Article  CAS  Google Scholar 

  • Ramanand K, Suflita JM (1991) Anaerobic degradation of m-cresol in anoxic aquifer slurries: carboxylation reactions in a sulfate-reducing bacterial enrichment. Appl Environ Microbiol 57:1689–1695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rather IA, Koh WY, Paek WK, Lim J (2017) The sources of chemical contaminants in food and their health implications. Front Pharmacol 8:830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribbons DW (1970) Specificity of monohydric phenol oxidations by meta cleavage pathways in Pseudomonas aeruginosa strain Tl. Arch Microbiol 74:103–115

    Google Scholar 

  • Roberts DJ, Fedorak PM, Hrudey SE (1990) CO2 Incorporation and 4-hydroxy-2-methylbenzoic acid formation during anaerobic metabolism of m-cresol by a methanogenic consortium. Appl Environ Microbiol 56:472–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Santos T, Ferreira F, Silva L, Freitas AC, Pereira R, Diniz M, Castro L, Peres I, Duarte AC (2010) Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent. Environ Sci Pollut Res Int 17:866–874

    Article  CAS  PubMed  Google Scholar 

  • Rudolphi A, Tschech A, Fuchs G (1991) Anaerobic degradation of cresols by denitrifying bacteria. Arch Microbiol 155:238–248

    Article  CAS  PubMed  Google Scholar 

  • Saiyood S, Vangnai AS, Thiravetyan P, Inthorn D (2010) Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria. J Hazard Mater 178:777–785

    Article  CAS  PubMed  Google Scholar 

  • Sharma HA, Barber JT, Ensley HE, Polito MA (1997) A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemna gibba, with special reference to 2,4,5-trichlorophenol. Environ Toxicol Chem 16:346–350

    Article  CAS  Google Scholar 

  • Shivaraman N, Pandey R (2000) Characterization and biodegradation of phenolic wastewater. J Indian Assoc Environ Manag 27:12–15

    Google Scholar 

  • Solyanikova IP, Golovleva LA (2004) Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects. J Environ Sci Health B 39:333–351

    Article  PubMed  CAS  Google Scholar 

  • Stockinger J, Hinteregger C, Loidl M, Ferschl A, Streichsbier F (1992) Mineralization of 3-chloro-4-methylaniline via an ortho-cleavage pathway by Pseudomonas cepacia strain CMA1. Appl Microbiol Biotechnol 38:421–428

    Article  CAS  Google Scholar 

  • Stolz A, Busse HJ, Kampfer P (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576

    Article  CAS  PubMed  Google Scholar 

  • Stuermer DH, Ng DJ, Orris CJ (1982) Organic contaminants in groundwater near an underground coal gasification site in North-Eastern Wyoming. Environ Sci Technol 16:582–587

    Article  CAS  PubMed  Google Scholar 

  • Suflita JM, Liang L, Saxena A (1989) The anaerobic biodegradation of o-, m- and p-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer. J Ind Microbiol 4:255–266

    Article  CAS  Google Scholar 

  • Tallur PN, Megadi VB, Kamanavalli CM, Ninnekar HZ (2006) Biodegradation of p-cresol by Bacillus sp. strain PHN 1. Curr Microbiol 53:529–533

    Article  CAS  PubMed  Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2009) Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1. Biodegradation 20:79–83

    Article  CAS  PubMed  Google Scholar 

  • Tallur PN, Mulla SI, Megadi VB, Talwar MP, Ninnekar HZ (2015) Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Braz J Microbiol 46:667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talwar MP, Mulla SI, Ninnekar HZ (2014) Biodegradation of organophosphate pesticide quinalphos by Ochrobactrum sp. strain HZM. J Appl Microbiol 117:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Templeton MR, Graham N, Voulvoulis N (2009) Emerging chemical contaminants in water and wastewater. Philos Trans A, Math Phy Eng Sci 367:3873–3875

    Article  Google Scholar 

  • Ushiba Y, Takahara Y, Ohta H (2003) Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048

    Article  CAS  PubMed  Google Scholar 

  • Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005) The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Bioch Eng J 24:243–247

    Article  CAS  Google Scholar 

  • Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Bioch Eng J 29:227–234

    Article  CAS  Google Scholar 

  • Yu CP, Deeb RA, Chu KH (2013) Microbial degradation of steroidal estrogens. Chemosphere 91:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008) Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater 155:305–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are very thankful to Dr. H Z. Ninnekar for his valuable suggestions during the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulla, S.I. et al. (2019). Microbial Degradation of Phenolic Compounds. In: Kumar, A., Sharma, S. (eds) Microbes and Enzymes in Soil Health and Bioremediation. Microorganisms for Sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_13

Download citation

Publish with us

Policies and ethics