Skip to main content

EEG Preprocessing and Denoising

  • Chapter
  • First Online:
EEG Signal Processing and Feature Extraction

Abstract

In this chapter, we first introduce physiological and non-physiological artifacts embedded in the raw EEG signals, e.g., ocular related artifacts (physiological) and power line interference (non-physiological). Then, we introduce the montage to describe and apply the location of scalp electrodes in the context of EEG studies. Further, we describe several preprocessing steps that are commonly used in the EEG preprocessing, including filtering, re-referencing, segmenting, removal of bad channels and trials, as well as decomposition of EEG using independent component analysis. More specifically, appropriate band-pass filtering can effectively reduce superimposed artifacts from various sources which are embedded in the EEG recordings. Re-referencing is a linear transformation of the EEG data, through which noise in the reference electrodes could turn into noise in the scalp electrodes. Data epochs that are time-locked to the specific events of interest should be extracted to facilitate the investigation of task/stimulus-related changes in EEG. Trials contaminated by artifacts, as well as bad channels that are not functioning properly for various reasons, should be excluded from further analysis. Given that the EEG data recorded from scalp electrodes can be considered as summations of neural activities, and that artifacts are independent with each other, independent component analysis could be a powerful and efficient strategy to separate artifact from EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya JN, Hani AJ, Thirumala PD, Tsuchida TN. American clinical neurophysiology society guideline 3: a proposal for standard montages to be used in clinical EEG. J Clin Neurophysiol. 2016;33(4):312–6.

    Article  Google Scholar 

  • Anemuller J, Sejnowski TJ, Makeig S. Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw. 2003;16(9):1311–23.

    Article  Google Scholar 

  • Barlow J. Clinical applications of computer analysis of EEG and other neurophysiological signals. Handbook of EEG. Amsterdam: Elsevier; 1986.

    Google Scholar 

  • Blum DE. Computer-based electroencephalography: technical basics, basis for new applications, and potential pitfalls. Electroencephalogr Clin Neurophysiol. 1998;106(2):118–26.

    Article  CAS  Google Scholar 

  • Bugli C, Lambert P. Comparison between principal component analysis and independent component analysis in electroencephalograms modelling. Biom J. 2007;49(2):312–27.

    Article  CAS  Google Scholar 

  • Cohen MK. Analyzing neural time series data: theory and practice. Cambridge, MA: MIT Press; 2013.

    Google Scholar 

  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.

    Article  Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen MS. MNE software for processing MEG and EEG data. NeuroImage. 2014;86:446–60.

    Article  Google Scholar 

  • Gratton G, Coles MG, Donchin E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol. 1983;55(4):468–84.

    Article  CAS  Google Scholar 

  • Greischar LL, Burghy CA, van Reekum CM, Jackson DC, Pizzagalli DA, Mueller C, Davidson RJ. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clin Neurophysiol. 2004;115(3):710–20.

    Article  Google Scholar 

  • Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16(2):95–9.

    Article  Google Scholar 

  • Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One. 2008;3(8):e3004.

    Article  Google Scholar 

  • Hu S, Lai YX, Valdes-Sosa PA, Bringas-Vega ML, Yao DZ. How do reference montage and electrodes setup affect the measured scalp EEG potentials? J Neural Eng. 2018;15(2):026013.

    Article  Google Scholar 

  • Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13(4–5):411–30.

    Article  CAS  Google Scholar 

  • Islam MK, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG: a review. Neurophysiol Clin. 2016;46(4–5):287–305.

    Article  Google Scholar 

  • Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37(2):163–78.

    Article  CAS  Google Scholar 

  • Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138.

    Article  Google Scholar 

  • Nakamura M, Shibasaki H. Elimination of EKG artifacts from EEG records: a new method of non-cephalic referential EEG recording. Electroencephalogr Clin Neurophysiol. 1987;66(1):89–92.

    Article  CAS  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

    Article  Google Scholar 

  • Plochl M, Ossandon JP, Konig P. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front Hum Neurosci. 2012;6:278.

    Article  Google Scholar 

  • Vorobyov S, Cichocki A. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis. Biol Cybern. 2002;86(4):293–303.

    Article  Google Scholar 

  • Yao DZ. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas. 2010;22(4):693–711.

    Article  Google Scholar 

  • Zaveri HP, Duckrow RB, Spencer SS. On the use of bipolar montages for time-series analysis of intracranial electroencephalograms. Clin Neurophysiol. 2006;117(9):2102–8.

    Article  Google Scholar 

  • Zou Y, Nathan V, Jafari R. Automatic identification of artifact-related independent components for artifact removal in EEG recordings. IEEE J Biomed Health Inform. 2016;20(1):73–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, W. (2019). EEG Preprocessing and Denoising. In: Hu, L., Zhang, Z. (eds) EEG Signal Processing and Feature Extraction. Springer, Singapore. https://doi.org/10.1007/978-981-13-9113-2_5

Download citation

Publish with us

Policies and ethics