EEG: Neural Basis and Measurement

  • Xiaolei XiaEmail author
  • Li Hu


This chapter aims to provide background knowledge about electroencephalogram (EEG) origin and measurement. First, a brief introduction of neural basis of EEG is summarized. Then, issues about volume conduction and source estimation of EEG are discussed. Finally, the fundamentals of EEG measurement and the methods for improving performance of EEG measurement are provided.


Electroencephalogram Neural basis Electrocorticogram Local field potential Measurement 


  1. Acharya JN, Hani A, Cheek J, Thirumala P, Tsuchida TN. American Clinical Neurophysiology society guideline 2: guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2016;33(4):308–11. Scholar
  2. American Clinical Neurophysiology, S. Guideline 5: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2006;23(2):107–10.CrossRefGoogle Scholar
  3. Avitan L, Teicher M, Abeles M. EEG generator–a model of potentials in a volume conductor. J Neurophysiol. 2009;102(5):3046–59. Scholar
  4. Baek JY, An JH, Choi JM, et al. Flexible polymeric dry electrodes for the long-term monitoring of ECG[J]. Sensors Actuators A Phys. 2008;143(2):423–9.CrossRefGoogle Scholar
  5. Bazhenov M, Lonjers P, Skorheim S, Bedard C, Dstexhe A. Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations. Philos Trans A Math Phys Eng Sci. 2011;369(1952):3802–19. Scholar
  6. Beckmann L, Neuhaus C, Medrano G, Jungbecker N, Walter M, Gries T, Leonhardt S. Characterization of textile electrodes and conductors using standardized measurement setups. Physiol Meas. 2010;31(2):233–47. Scholar
  7. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407.CrossRefGoogle Scholar
  8. Chiou JC, Ko LW, Lin CT, et al. Using novel MEMS EEG sensors in detecting drowsiness application[C]//2006 IEEE Biomedical Circuits and Systems Conference. IEEE; 2006. p. 33–36.Google Scholar
  9. Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci. 2005;6(1):35–47. Scholar
  10. Fonseca C, Silva Cunha JP, Martins RE, Ferreira VM, Marques de Sa JP, Barbosa MA, Martins da Silva A. A novel dry active electrode for EEG recording. IEEE Trans Biomed Eng. 2007;54(1):162–5. Scholar
  11. Freeman WJ. Use of spatial deconvolution ot compensate for distortion of EEG by volume conduction. IEEE Trans Biomed Eng. 1980;27(8):421–9. Scholar
  12. Fuchs M, Wagner M, Kastner J. Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol. 2007;24(2):101–19. Scholar
  13. Gold C, Henze DA, Koch C, Buzsaki G. On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol. 2006;95(5):3113–28. Scholar
  14. Griss P, Enoksson P, Tolvanen-Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. J Microelectromech Syst. 2001;10(1):10–6. Scholar
  15. Griss P, Tolvanen-Laakso HK, Merilainen P, Stemme G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Biomed Eng. 2002;49(6):597–604. Scholar
  16. Gruetzmann A, Hansen S, Muller J. Novel dry electrodes for ECG monitoring. Physiol Meas. 2007;28(11):1375–90. Scholar
  17. Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 2000;84(1):390–400. Scholar
  18. Hildebrandt J, Smith D, Great Pacific Media (Firm). The nervous system: neurons, networks, and the human brain. Colorado Springs: Great Pacific Media; 2008.Google Scholar
  19. Hoffmann KP, Ruff R. Flexible dry surface-electrodes for ECG long-term monitoring. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5740–3. Scholar
  20. Holmes GL, Khazipov R. Basic Neurophysiology and the cortical basis of EEG. In: Blum AS, Rutkove SB, editors. The clinical neurophysiology primer. Totowa: Humana Press; 2007. p. 19–33.CrossRefGoogle Scholar
  21. Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology. 2014;51(11):1061–71. Scholar
  22. Jasper HH. The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958;10:370–5.CrossRefGoogle Scholar
  23. Kajikawa Y, Schroeder CE. How local is the local field potential? Neuron. 2011;72(5):847–58. Scholar
  24. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ. Principles of neural science. 5th ed. New York/London: McGraw-Hill; 2013.Google Scholar
  25. Kim YS, Baek HJ, Kim JS, Lee HB, Choi JM, Park KS. Helmet-based physiological signal monitoring system. Eur J Appl Physiol. 2009;105(3):365–72. Scholar
  26. Knott JR. Regarding the American electroencephalographic society guidelines for standard electrode position nomenclature: a commentary on the proposal to change the 10–20 electrode designators. J Clin Neurophysiol. 1993;10(1):123–8.CrossRefGoogle Scholar
  27. Kutas M. Views on how the electrical activity that the brain generates reflects the functions of different language structures. Psychophysiology. 1997;34(4):383–98. Scholar
  28. Lin CT, Liao LD, Liu YH, Wang IJ, Lin BS, Chang JY. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng. 2011;58(5):1200–7. Scholar
  29. Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grun S, Diesmann M, Einevoll GT. Modeling the spatial reach of the LFP. Neuron. 2011;72(5):859–72. Scholar
  30. Lopes da Silva F. EEG: origin and measurement. In: Mulert C, Lemieux L, editors. EEG - fMRI. Berlin/Heidelberg: Springer; 2009.Google Scholar
  31. Luck SJ. An introduction to the event-related potential technique. Cambridge, MA: MIT Press; 2014.Google Scholar
  32. Matthews R, McDonald NJ, Anumula H, Woodward J, Turner PJ, Steindorf MA, Chang K, Pendleton JM. Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system. Berlin/Heidelberg: Springer; 2007.CrossRefGoogle Scholar
  33. Matthews R, Turner PJ, McDonald NJ, Ermolaev K, Manus T, Shelby RA, Steindorf M. Real time workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5871–5. Scholar
  34. MettingVanRijn AC, Kuiper AP, Dankers TE, Grimbergen CA. Low-cost active electrode improves the resolution in biopotential recordings. Paper presented at the Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1996Google Scholar
  35. Nagel JH. Biopotential amplifiers. In: The biomedical engineering handbook, vol. 2. Boca Raton: CRC/Taylor & Francis; 2000. p. 1300.Google Scholar
  36. Niedermeyer E, Lopes da Silva FH. Electroencephalography: basic principles, clinical applications, and related fields. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
  37. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. Oxford/New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  38. Picton TW, Lins OG, Scherg M. The recording and analysis of event-related potentials, vol. 10; 1995.Google Scholar
  39. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000;37(2):127–52.. doi:undefinedCrossRefGoogle Scholar
  40. Rosler F, Heil M, Hennighausen E. Distinct cortical activation patterns during long-term memory retrieval of verbal, spatial, and color information. J Cogn Neurosci. 1995;7(1):51–65. Scholar
  41. Rowan AJ, Tolunsky E. Primer of EEG: with a mini-atlas. Philadelphia: Butterworth-Heinemann; 2003.Google Scholar
  42. Ruffini G, Dunne S, Farrés E, Marco-Pallarés J, Ray C, Mendoza E, Silva R, Grau C. A dry electrophysiology electrode using CNT arrays. Sensors Actuators A Phys. 2006;132(1):34–41. Scholar
  43. Squire LR. Fundamental neuroscience. 3rd ed. Amsterdam/Boston: Elsevier/Academic; 2008.Google Scholar
  44. Srinivasan R, Tucker DM, Murias M. Estimating the spatial Nyquist of the human EEG. Behav Res Methods Instrum Comput. 1998;30(1):8–19. Scholar
  45. Taheri BA, Knight RT, Smith RL. A dry electrode for EEG recording. Electroencephalogr Clin Neurophysiol. 1994;90(5):376–83.CrossRefGoogle Scholar
  46. Teplan M. Fundamentals of EEG measurement. Measurement Sci Rev. 2002;2(2):1–11.Google Scholar
  47. Yao D. A method to standardize a reference of scalp EEG recordings to a point at infinity[J]. Physiol Meas. 2001;22(4):693.CrossRefGoogle Scholar
  48. Yao D, Wang L, Oostenveld R, et al. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference[J]. Physiol Meas. 2005;26(3):173.CrossRefGoogle Scholar
  49. Zhang H, Tao XM. Textile-structured electrodes for electrocardiogram AU – Xu, P. J Textile Progress. 2008;40(4):183–213. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
  2. 2.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations