Single-Trial Analysis



In modern neuroscience, accurate estimations of single-trial parameters in event-related brain responses have been set as a highly desirable goal, since the traditionally used across-trial averaging approach could lead to the loss of the information concerning across-trial variability of both phase-locked ERP and non-phase-locked ERS/ERD responses. In this chapter, we provided the technical details of single-trial analysis methods both in the time domain and the time-frequency domain to enhance the signal-to-noise ratio of event-related brain responses and estimate their single-trial parameters (e.g., latency and amplitude of ERP peaks, as well as latency, frequency, and magnitude of EEG oscillatory features). These methods included probabilistic independent component analysis and common spatial pattern for spatial filtering, continuous wavelet transform for time-frequency filtering, as well as multiple linear regression without/with a dispersion term for feature extraction. Finally, we emphasized the importance of single-trial analysis and discussed its promising applications in basic studies and clinical practice.


Spatial filtering Wavelet filtering Multiple linear regression Variability Single trial 


  1. Ab Aziz CB, Ahmad AH. The role of the thalamus in modulating pain. Malays J Med Sci. 2006;13(2):11–8.PubMedPubMedCentralGoogle Scholar
  2. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. NeuroImage. 1998;8(3):229–39.PubMedCrossRefGoogle Scholar
  3. Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage. 2000;12(2):230–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aminoff MJ, Olney RK, Parry GJ, Raskin NH. Relative utility of different electrophysiologic techniques in the evaluation of brachial plexopathies. Neurology. 1988;38(4):546–50.PubMedCrossRefGoogle Scholar
  5. Bagshaw AP, Warbrick T. Single trial variability of EEG and fMRI responses to visual stimuli. NeuroImage. 2007;38(2):280–92.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barbati G, Sigismondi R, Zappasodi F, Porcaro C, Graziadio S, Valente G, et al. Functional source separation from magnetoencephalographic signals. Hum Brain Mapp. 2006;27(12):925–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barbati G, Porcaro C, Hadjipapas A, Adjamian P, Pizzella V, Romani GL, et al. Functional source separation applied to induced visual gamma activity. Hum Brain Mapp. 2008;29(2):131–41.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23(2):137–52.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–59.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bernat EM, Williams WJ, Gehring WJ. Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol. 2005;116(6):1314–34.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bernat EM, Malone SM, Williams WJ, Patrick CJ, Iacono WG. Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. Int J Psychophysiol. 2007;64(1):62–74.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bingham E, Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex valued signals. Int J Neural Syst. 2000;10(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Muller KR. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naive subjects. IEEE Trans Biomed Eng. 2008;55(10):2452–62.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Casarotto S, Bianchi AM, Cerutti S, Chiarenza GA. Dynamic time warping in the analysis of event-related potentials. IEEE Eng Med Biol Mag. 2005;24(1):68–77.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cichocki A. Tensor decompositions: a new concept in brain data analysis? CoRR. 2013:abs/1305.0395.Google Scholar
  16. Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119(8):1705–19.PubMedCrossRefGoogle Scholar
  17. Dawson GD. A summation technique for detecting small signals in a large irregular background. J Physiol. 1951;115(1):2p–3p.PubMedGoogle Scholar
  18. Dawson GD. A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol. 1954;6(1):65–84.PubMedCrossRefGoogle Scholar
  19. de Weerd JP. A posteriori time-varying filtering of averaged evoked potentials. I Introduction and conceptual basis. Biol Cybern. 1981;41(3):211–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. de Weerd JP, Kap JI. A posteriori time-varying filtering of averaged evoked potentials. II Mathematical and computational aspects. Biol Cybern. 1981;41(3):223–34.PubMedCrossRefGoogle Scholar
  21. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25(50):11730–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Debener S, Ullsperger M, Siegel M, Engel AK. Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci. 2006;10(12):558–63.PubMedCrossRefGoogle Scholar
  23. Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK, et al. Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. NeuroImage. 2007;34(2):587–97.PubMedCrossRefGoogle Scholar
  24. Deletis V, Shils JL. Neurophysiology in neurosurgery: a modern intraoperative approach. San Diego: Academic; 2002.Google Scholar
  25. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Devlin VJ, Anderson PA, Schwartz DM, Vaughan R. Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues. Spine J. 2006;6(6 Suppl):212S–24S.PubMedCrossRefGoogle Scholar
  27. Dien J. Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology. 2009;Google Scholar
  28. Doyle DJ. Some comments on the use of Wiener filtering for the estimation of evoked potentials. Electroencephalogr Clin Neurophysiol. 1975;38(5):533–4.PubMedCrossRefGoogle Scholar
  29. Friman O, Borga M, Lundberg P, Knutsson H. Adaptive analysis of fMRI data. NeuroImage. 2003;19(3):837–45.PubMedCrossRefGoogle Scholar
  30. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R. Event-related fMRI: characterizing differential responses. NeuroImage. 1998;7(1):30–40.PubMedCrossRefGoogle Scholar
  31. Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin. 2003;33(6):279–92.PubMedCrossRefGoogle Scholar
  32. Goldman RI, Wei CY, Philiastides MG, Gerson AD, Friedman D, Brown TR, et al. Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. NeuroImage. 2009;47(1):136–47.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hossein-Zadeh GA, Ardekani BA, Soltanian-Zadeh H. A signal subspace approach for modeling the hemodynamic response function in fMRI. Magn Reson Imaging. 2003;21(8):835–43.PubMedCrossRefGoogle Scholar
  34. Hu Y, Luk KD, Lu WW, Leong JC. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosurg Psychiatry. 2003;74(1):82–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hu Y, Lam BS, Chang CQ, Chan FH, Lu WW, Luk KD. Adaptive signal enhancement of somatosensory evoked potential for spinal cord compression detection: an experimental study. Comput Biol Med. 2005;35(9):814–28.PubMedCrossRefGoogle Scholar
  36. Hu L, Mouraux A, Hu Y, Iannetti GD. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage. 2010;50(1):99–111.PubMedCrossRefGoogle Scholar
  37. Hu L, Liang M, Mouraux A, Wise RG, Hu Y, Iannetti GD. Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. J Neurophysiol. 2011a;106(6):3216–29.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu L, Zhang ZG, Hung YS, Luk KD, Iannetti GD, Hu Y. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering. Clin Neurophysiol. 2011b;122(7):1429–39.PubMedCrossRefGoogle Scholar
  39. Hu L, Zhang ZG, Mouraux A, Iannetti GD. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. NeuroImage. 2015;111:442–53.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Huang DS, Mi JX. A new constrained independent component analysis method. IEEE Trans Neural Netw. 2007;18(5):1532–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Huang G, Xiao P, Hung YS, Iannetti GD, Zhang ZG, Hu L. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage. 2013;81:283–93.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999;10(3):626–34.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13(4–5):411–30.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JC, Zambreanu L, et al. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. NeuroImage. 2005a;28(3):708–19.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Iannetti GD, Zambreanu L, Cruccu G, Tracey I. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience. 2005b;131(1):199–208.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Iannetti GD, Zambreanu L, Tracey I. Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J Physiol. 2006;577.(Pt 1:235–48.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol. 2008;100(2):815–28.PubMedPubMedCentralCrossRefGoogle Scholar
  48. James CJ, Gibson OJ. Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis. IEEE Trans Biomed Eng. 2003;50(9):1108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jolliffe IT. Principal component analysis. 2nd ed. New York: Springer; 2002.Google Scholar
  50. Jongsma MLA, Eichele T, Van Rijn CM, Coenen AML, Hugdahl K, Nordby H, et al. Tracking pattern learning with single-trial event-related potentials. Clin Neurophysiol. 2006;117(9):1957–73.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp. 2001;14(3):166–85.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kaiser HF. Citation classic – varimax criterion for analytic rotation in factor-analysis. Cc/Soc Behav Sci. 1979;(24):20.Google Scholar
  53. Kayser J, Tenke CE. Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation. Clin Neurophysiol. 2003;114(12):2307–25.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Koles ZJ. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol. 1991;79(6):440–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Koles ZJ, Lazar MS, Zhou SZ. Spatial patterns underlying population differences in the background EEG. Brain Topogr. 1990;2(4):275–84.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lam BS, Hu Y, Lu WW, Luk KD, Chang CQ, Qiu W, et al. Multi-adaptive filtering technique for surface somatosensory evoked potentials processing. Med Eng Phys. 2005;27(3):257–66.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lee MC, Mouraux A, Iannetti GD. Characterizing the cortical activity through which pain emerges from nociception. J Neurosci. 2009;29(24):7909–16.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Legrain V, Guerit JM, Bruyer R, Plaghki L. Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain. 2002;99(1–2):21–39.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Legrain V, Bruyer R, Guerit JM, Plaghki L. Nociceptive processing in the human brain of infrequent task-relevant and task-irrelevant noxious stimuli. A study with event-related potentials evoked by CO2 laser radiant heat stimuli. Pain. 2003;103(3):237–48.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lu W, Rajapakse JC. ICA with Reference. Neurocomputing. 2006;69:2244–57.CrossRefGoogle Scholar
  61. Luk KD, Hu Y, Lu WW, Wong YW. Effect of stimulus pulse duration on intraoperative somatosensory evoked potential (SEP) monitoring. J Spinal Disord. 2001;14(3):247–51.PubMedCrossRefGoogle Scholar
  62. Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A. 1997;94(20):10979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mayhew SD, Iannetti GD, Woolrich MW, Wise RG. Automated single-trial measurement of amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clin Neurophysiol. 2006;117(6):1331–44.PubMedCrossRefGoogle Scholar
  64. Mayhew SD, Dirckx SG, Niazy RK, Iannetti GD, Wise RG. EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans. NeuroImage. 2010;49(1):849–64.PubMedCrossRefGoogle Scholar
  65. Minahan RE. Intraoperative neuromonitoring. Neurologist. 2002;8(4):209–26.PubMedCrossRefGoogle Scholar
  66. Minka TP. Automatic choice of dimensionality for PCA. Adv Neural Inf Proces Syst. 2001;13:598–604.Google Scholar
  67. Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging. 2008;26(7):1041–54.PubMedCrossRefGoogle Scholar
  68. Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol. 2009;101(6):3258–69.PubMedCrossRefGoogle Scholar
  69. Mouraux A, Plaghki L. Single-trial detection of human brain responses evoked by laser activation of Adelta-nociceptors using the wavelet transform of EEG epochs. Neurosci Lett. 2004;361(1–3):241–4.PubMedCrossRefGoogle Scholar
  70. Mouraux A, Guerit JM, Plaghki L. Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between A partial partial differential- and C-fibre afferent volleys. Clin Neurophysiol. 2003;114(4):710–22.PubMedCrossRefGoogle Scholar
  71. Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol. 1999;110(5):787–98.PubMedCrossRefGoogle Scholar
  72. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage. 2005;28(3):720–37.PubMedCrossRefGoogle Scholar
  73. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. Oxford/New York: Oxford University Press; 2006.CrossRefGoogle Scholar
  74. Nuwer MR. Spinal cord monitoring with somatosensory techniques. J Clin Neurophysiol. 1998;15(3):183–93.PubMedCrossRefGoogle Scholar
  75. Orssaud C. Leber’s hereditary optic neuropathy. Orphanet Encyclopedia; 2003Google Scholar
  76. Pelosi L, Geesken JM, Holly M, Hayward M, Blumhardt LD. Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain. 1997;120(Pt 11):2039–58.PubMedCrossRefGoogle Scholar
  77. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.PubMedCrossRefGoogle Scholar
  78. Porcaro C, Barbati G, Zappasodi F, Rossini PM, Tecchio F. Hand sensory-motor cortical network assessed by functional source separation. Hum Brain Mapp. 2008;29(1):70–81.PubMedCrossRefGoogle Scholar
  79. Porcaro C, Coppola G, Di Lorenzo G, Zappasodi F, Siracusano A, Pierelli F, et al. Hand somatosensory subcortical and cortical sources assessed by functional source separation: an EEG study. Hum Brain Mapp. 2009;30(2):660–74.PubMedCrossRefGoogle Scholar
  80. Porcaro C, Ostwald D, Bagshaw AP. Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI. NeuroImage. 2010;50(1):112–23.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Purves AM, Boyd SG. Time-shifted averaging for laser evoked potentials. Electroencephalogr Clin Neurophysiol. 1993;88(2):118–22.CrossRefGoogle Scholar
  82. Quiroga RQ. Obtaining single stimulus evoked potentials with wavelet denoising. Physica D. 2000;145(3–4):278–92.CrossRefGoogle Scholar
  83. Quiroga RQ, Garcia H. Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol. 2003;114(2):376–90.CrossRefGoogle Scholar
  84. Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng. 2000;8(4):441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Richman MB. Rotation of Principal Components. J Climatol. 1986;6(3):293–335.CrossRefGoogle Scholar
  86. Rossi L, Bianchi AM, Merzagora A, Gaggiani A, Cerutti S, Bracchi F. Single trial somatosensory evoked potential extraction with ARX filtering for a combined spinal cord intraoperative neuromonitoring technique. Biomed Eng Online. 2007;6:2.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Roweis S. EM algorithms for PCA and SPCA. Adv Neural Inf Proces Syst. 1998;10:626–32.Google Scholar
  88. Schnakers C, Chatelle C, Majerus S, Gosseries O, De Val M, Laureys S. Assessment and detection of pain in noncommunicative severely brain-injured patients. Expert Rev Neurother. 2010;10(11):1725–31.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Schulz E, Zherdin A, Tiemann L, Plant C, Ploner M. Decoding an individual’s sensitivity to pain from the multivariate analysis of EEG data. Cereb Cortex. 2012;22(5):1118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Spencer KM. Averaging, detection, and classification of single-trial ERPs. In: Handy TC, editor. Event-related potentials: a methods handbook. Cambridge, MA: MIT Press; 2005. p. 209–27.Google Scholar
  91. Tang AC, Sutherland MT, McKinney CJ. Validation of SOBI components from high-density EEG. NeuroImage. 2005;25(2):539–53.PubMedCrossRefGoogle Scholar
  92. Tecchio F, Porcaro C, Barbati G, Zappasodi F. Functional source separation and hand cortical representation for a brain-computer interface feature extraction. J Physiol. 2007;580(Pt.3):703–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tipping ME, Bishop CM. Mixtures of probabilistic principal component analyzers. Neural Comput. 1999a;11(2):443–82.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc Ser B Stat Methodol. 1999b;61:611–22.CrossRefGoogle Scholar
  95. Tognola G, Grandori F, Ravazzani P. Wavelet analysis of click-evoked otoacoustic emissions. IEEE Trans Biomed Eng. 1998;45(6):686–97.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Tu Y, Zhang Z, Tan A, Peng W, Hung YS, Moayedi M, et al. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Hum Brain Mapp. 2016;37(2):501–14.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Walter DO. A posteriori “Wiener filtering” of average evoked responses. Electroencephalogr Clin Neurophysiol Suppl. 1968;27:61+.Google Scholar
  98. Wang Z, Maier A, Leopold DA, Logothetis NK, Liang H. Single-trial evoked potential estimation using wavelets. Comput Biol Med. 2007;37(4):463–73.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96(2):255–62.PubMedCrossRefGoogle Scholar
  100. Woolrich MW, Behrens TE, Smith SM. Constrained linear basis sets for HRF modelling using Variational Bayes. NeuroImage. 2004;21(4):1748–61.PubMedCrossRefGoogle Scholar
  101. Yiannikas C, Vucic S. Utility of somatosensory evoked potentials in chronic acquired demyelinating neuropathy. Muscle Nerve. 2008;38(5):1447–54.PubMedCrossRefGoogle Scholar
  102. Yu KB, McGillem CD. Optimum filters for estimating evoked potential waveforms. IEEE Trans Biomed Eng. 1983;30(11):730–7.PubMedCrossRefGoogle Scholar
  103. Zeman BD, Yiannikas C. Functional prognosis in stroke: use of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 1989;52(2):242–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
  2. 2.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations