Advertisement

Smart Sorption Materials in Green Analytical Chemistry

  • Francesc A. Esteve-TurrillasEmail author
  • Sergio Armenta
  • Salvador Garrigues
  • Miguel de la Guardia
Chapter
  • 466 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

The use of smart materials as alternative sorption materials for their use in greening sample preparation has been reviewed. It has been taking into consideration recent advances on the use of natural products, without any modification or purification, for making analyte extraction and pre-concentration and the use of specific materials in solid-phase extraction (SPE) and solid-phase microextraction (SPME) approaches. Inorganic materials, such as metal oxides, alumina-based, silica-based, and carbon-based materials together with biomimetic sorbents such as classical immunosorbents, aptamers, and molecularly imprinted polymers, have been reviewed as examples of these materials, stressing the enhancement of analytical features involved in their use and advertising about side effects coming from their production system and use. The main objective has been to put the spotlight on these smart materials, which can offer alternative and simple tools for matrix removal and analyte pre-concentration, improving selectivity and specificity of traditional analytical determinations.

Keywords

Aptamers Carbon-based materials Immunosorbents Metal oxides Molecularly imprinted materials (MIPs) Nanomaterials Sample treatment Solid-phase extraction (SPE) Solid-phase microextraction (SPME) Silica-based materials Sorption materials 

References

  1. 1.
    Korn MDA, Morte ESD, dos Santos DCMB, Castro JT, Barbosa JTP, Teixeira AP, Fernandes AP, Welz B, dos Santos WPC, dos Santos EBGN, Korn M (2008) Sample preparation for the determination of metals in food samples using spectroanalytical methods—a review. Appl Spectrosc Rev 43:67–92CrossRefGoogle Scholar
  2. 2.
    Mitra S (ed) (2003) Sample preparation techniques in analytical chemistry. Wiley, HobokenGoogle Scholar
  3. 3.
    de la Guardia M, Armenta S (2011) Green analytical chemistry: theory & practice, in comprehensive analytical chemistry series, vol 57. Elsevier, OxfordCrossRefGoogle Scholar
  4. 4.
    Pawliszyn J, Lord HL (eds) (2010) Handbook of sample preparation. Wiley, HobokenGoogle Scholar
  5. 5.
    McCracken KE, Yoon JY (2016) Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal Methods 8:6591–6601CrossRefGoogle Scholar
  6. 6.
    Chiu ML, Lawi W, Snyder ST, Wong PK, Liao JC, Gau V (2010) Matrix effects-A challenge toward automation of molecular analysis. JALA 15:233–242Google Scholar
  7. 7.
    Rios A, Zougagh M, Avila M (2012) Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. Anal Chim Acta 740:1–11PubMedCrossRefGoogle Scholar
  8. 8.
    Garrigues S, Armenta S, de la Guardia M (2010) Green strategies for decontamination of analytical wastes. TrAC-Trends Anal Chem 29:592–601CrossRefGoogle Scholar
  9. 9.
    Rocha FRP (2018) Flow analysis: looking back and forward. J Braz Chem Soc 29:1032–1040Google Scholar
  10. 10.
    Economou A (2005) Sequential-injection analysis (SIA): a useful tool for on-line sample-handling and pre-treatment. TrAC-Trends Anal Chem 24:416–425CrossRefGoogle Scholar
  11. 11.
    Feres MA, Fortes PR, Zagatto EAG, Santos JLM, Lima JLFC (2008) Multi-commutation in flow analysis: recent developments and applications. Anal Chim Acta 618:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    de la Guardia M (1999) An integrated approach of analytical chemistry. J Braz Chem Soc 10:429–437CrossRefGoogle Scholar
  13. 13.
    Oosterbroek RE, van den Berg A (eds) (2003) Lab-on-a-Chip. Miniaturized systems for (Bio) chemical analysis and synthesis. Elsevier Science, New YorkGoogle Scholar
  14. 14.
    de la Guardia M, Esteve-Turrillas FA (eds) (2019) Handbook of smart materials in analytical chemistry. Wiley, HobokenGoogle Scholar
  15. 15.
    Grudpan K, Hartwell SK, Lapanantnoppakhun S, McKelvie I (2010) The case for the use of unrefined natural reagents in analytical chemistry—a green chemical perspective. Anal Methods 2:1651–1661CrossRefGoogle Scholar
  16. 16.
    Lu Q, Wu JH, Yu QW, Feng YQ (2014) Using pollen grains as novel hydrophilic solid-phase extraction sorbents for the simultaneous determination of 16 plant growth regulators. J Chromatogr A 1367:39–47PubMedCrossRefGoogle Scholar
  17. 17.
    Dominguez E, Mercado JA, Quesada MA, Heredia A (1999) Pollen sporopollenin: degradation and structural elucidation. Sex Plant Reprod 12:171–178CrossRefGoogle Scholar
  18. 18.
    Lu Q, Zhao Q, Yu QW, Feng YQ (2015) Use of pollen solid-phase extraction for the determination of trans-resveratrol in peanut oils. J Agric Food Chem 63:4771–4776PubMedCrossRefGoogle Scholar
  19. 19.
    Selman MH, Hemayatkar M, Deelder AM, Wuhrer M (2011) Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem 83:2492–2499PubMedCrossRefGoogle Scholar
  20. 20.
    Dedvisitsakul P, Jacobsen S, Svensson B, Bunkenborg J, Finnie C, Hagglund P (2014) Glycopeptide enrichment using a combination of ZIC-HILIC and cotton wool for exploring the glycoproteome of wheat flour albumins. J Proteome Res 13:2696–2703PubMedCrossRefGoogle Scholar
  21. 21.
    Zaria N, Hassan J, Tabar-Heydar K, Ahmadia SH (2016) On-line green solid phase extraction of trace rare earth elements and uranium in environmental samples and ICP OES Detection. J Braz Chem Soc 27:1881–1888Google Scholar
  22. 22.
    García-Valverde MT, Ledesma-Escobar CA, Lucena R, Cárdenas S (2018) Tunable polarity carbon fibers, a holistic approach to environmental protection. Molecules 23:1026PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    García-Valverde MT, Lucena R, Cárdenas S, Valcárcel M (2016) In-syringe dispersive micro-solid phase extraction using carbon fibres for the determination of chlorophenols in human urine by gas chromatography/mass spectrometry. J Chromatogr A 1464:42–49PubMedCrossRefGoogle Scholar
  24. 24.
    Suterio NG, do Carmo SN, Budziak D, Merib J, Carasek E (2018) Use of a natural sorbent as alternative solid-phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry. J Braz Chem Soc 29:2417–2425Google Scholar
  25. 25.
    do Carmo SN, Dias JMAN, Stolberg J, Budziak D, Carasek E (2017) A low-cost biosorbent-based coating for the highly sensitive determination of organochlorine pesticides by solid-phase microextraction and gas chromatography-electron capture detection. J Chromatogr A 1525:23–31PubMedCrossRefGoogle Scholar
  26. 26.
    Alves V, Mosquetta R, Coelho NMM, Bianchin J, Roux KCDP, Martendal E, Carasek E (2010) Determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line system coupled to FAAS. Talanta 80:1133–1138PubMedCrossRefGoogle Scholar
  27. 27.
    Sajid M, Basheer C, Alsharaa A, Narasimhan K, Buhmeida A, Al Qahtani M, Al-Ahwal MS (2016) Development of natural sorbent based micro-solid-phase extraction for determination of phthalate esters in milk samples. Anal Chim Acta 924:35–44PubMedCrossRefGoogle Scholar
  28. 28.
    Tavengwa NT (2016) Method development for the extraction of nitroaromatic compounds and polycyclic aromatic hydrocarbons from aqueous solutions by application of natural and synthetic sorbents. Ph.D. thesis, University of the Witwatersrand, JohannesburgGoogle Scholar
  29. 29.
    Pelit L, Ertas FN, Eroglu AE, Shahwan T, Tural H (2011) Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk. Bioresour Technol 102:8807–8813PubMedCrossRefGoogle Scholar
  30. 30.
    Baytak S, Türker AR (2005) The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III). Talanta 65:938–945PubMedCrossRefGoogle Scholar
  31. 31.
    Bakircioglu Y, Bakircioglu D, Akman S (2003) Solid phase extraction of bismuth and chromium by rice husk. J Trace Microprobe Tech 21:467–478CrossRefGoogle Scholar
  32. 32.
    Tarley CRT, Ferreira SLC, Arruda MAZ (2004) Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microcheml J 77:163–175CrossRefGoogle Scholar
  33. 33.
    Siahpoosh ZH, Soleimani M (2017) Extraction-preconcentration Mercury ion by Ghezeljeh montmorillonite nanoclay as a new native adsorbent from food and water samples. Nanochemistry 2:42–59Google Scholar
  34. 34.
    Belacy N, Someda HH (1997) Factors affecting the extraction of uranyl ions from radioactive waste using natural materials. J Radional Nucl Chem 219:55–59CrossRefGoogle Scholar
  35. 35.
    Someda HH, Sheha RR (2006) Solid phase extractive preconcentration of some actinide elements using impregnated carbon. J Nucl Radiochem Sci 7:37–43CrossRefGoogle Scholar
  36. 36.
    McDonald PD, Bouvier ESP (eds) (1995) Solid phase extraction. applications guide and bibliography: a resource for sample preparation methods development. Waters, MilfordGoogle Scholar
  37. 37.
    Nawrocki J, Dunlap C, McCormick A, Carr PW (2004) Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J Chromatogr A 1028:1–30PubMedCrossRefGoogle Scholar
  38. 38.
    Xu J, Wu P, Ye RC, Yuan BF, Feng YQ (2016) Metal oxides in sample pretreatment. TrAC-Trends Anal Chem 80:41–56CrossRefGoogle Scholar
  39. 39.
    Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Covalent surface modification of oxide surfaces. Angew Chem Int Editor 53:6322–6356CrossRefGoogle Scholar
  40. 40.
    Sheng QY, Li XL, Yin W, Yu L, Ke YX, Liang XM (2013) Retention mechanism and enrichment of glycopeptides on titanium dioxide. Anal Methods 5:7072–7080CrossRefGoogle Scholar
  41. 41.
    Wu JH, Li XS, Zhao Y, Gao QA, Guo L, Feng YQ (2010) Titania coated magnetic mesoporous hollow silica microspheres: fabrication and application to selective enrichment of phosphopeptides. Chem Commun 46:9031–9033CrossRefGoogle Scholar
  42. 42.
    Liu JF, Ding J, Yuan BF, Feng YQ (2014) Magnetic solid phase extraction coupled with in situ derivatization for the highly sensitive determination of acidic phytohormones in rice leaves by UPLC-MS/MS. Analyst 139:5605–5613PubMedCrossRefGoogle Scholar
  43. 43.
    Ding J, Wu JH, Liu JF, Yuan BF, Feng YQ (2014) Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods 10:39PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    García-Valverde MT, Lucena R, Cárdenas S, Valcárcel M (2014) Titanium-dioxide nanotubes as sorbents in (micro)extraction techniques. TrAC-Trend Anal Chem 62:37–45CrossRefGoogle Scholar
  45. 45.
    Wan HH, Yan JY, Yu L, Zhang XL, Xue XY, Li XL, Liang XM (2010) Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Talanta 82:1701–1707PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao X, Jiang WH, Yu L, Zou LJ, Li XL, Liang XM (2013) Selective enrichment of glycopeptides using aluminum oxide. Acta Chim Sin 71:343–346CrossRefGoogle Scholar
  47. 47.
    Cai BD, Zhu JX, Gao Q, Luo D, Yuan BF, Feng YQ (2014) Rapid and high-throughput determination of endogenous cytokinins in Oryza sativa by bare Fe3O4 nanoparticles-based magnetic solid-phase extraction. J Chromatogr A 1340:146–150PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao Q, Wei F, Xiao N, Yu QW, Yuan BF, Feng YQ (2012) Dispersive microextraction based on water-coated Fe3O4 followed by gas chromatography-mass spectrometry for determination of 3-monochloropropane-1,2-diol in edible oils. J Chromatogr A 1240:45–51PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao Q, Lu Q, Yu QW, Feng YQ (2013) Dispersive microextraction based on “magnetic water” coupled to gas chromatography/mass spectrometry for the fast determination of organophosphorus pesticides in cold-pressed vegetable oils. J Agric Food Chem 61:5397–5403PubMedCrossRefGoogle Scholar
  50. 50.
    Telepchak MJ, August TF, Chaney G (2004) Silica-based solid phase extraction. In: Telepchak MJ (ed) Forensic science and medicine: forensic and clinical applications of solid phase extraction. Humana Press Inc., TotowaCrossRefGoogle Scholar
  51. 51.
    Cai BD, Zhu JX, Shi ZG, Yuan BF, Feng YQ (2013) A simple sample preparation approach based on hydrophilic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for determination of endogenous cytokinins. J Chromatogr B 942:31–36CrossRefGoogle Scholar
  52. 52.
    Van Damme T, Zhang Y, Lynen F, Sandra P (2012) Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B 909:14–21CrossRefGoogle Scholar
  53. 53.
    Van Damme T, Lachova M, Lynen F, Szucs R, Sandra P (2014) Solid-phase extraction based on hydrophilic interaction liquid chromatography with acetone as eluent for eliminating matrix effects in the analysis of biological fluids by LC-MS. Anal Bioanal Chem 406:401–407PubMedCrossRefGoogle Scholar
  54. 54.
    Tang F, Yu QW, Yuan BF, Feng YQ (2017) Hydrophilic materials in sample pretreatment. TrAC-Trends Anal Chem 86:172–184CrossRefGoogle Scholar
  55. 55.
    Shen Q, Yang Q, Cheung HY (2015) Hydrophilic interaction chromatography based solid-phase extraction and MALDI TOF mass spectrometry for revealing the influence of Pseudomonas fluorescens on phospholipids in salmon fillet. Anal Bioanal Chem 407:1475–1484PubMedCrossRefGoogle Scholar
  56. 56.
    Wang Y, Ji SL, Zhang F, Zhang FF, Yang BC, Liang XM (2015) A polyvinyl alcohol-functionalized sorbent for extraction and determination of aminoglycoside antibiotics in honey. J Chromatogr A 1403:32–36PubMedCrossRefGoogle Scholar
  57. 57.
    Yu YQ, Gilar M, Kaska J, Gebler JC (2005) A rapid sample preparation method for mass spectrometric characterization of N-linked glycans. Rapid Commun Mass Spectrom 19:2331–2336PubMedCrossRefGoogle Scholar
  58. 58.
    Yu L, Li XL, Dong J, Zhang XL, Guo ZM, Liang XM (2010) Selective enrichment of N-linked glycopeptides by using a highly hydrophilic matrix synthesized via click chemistry. Anal Methods 2:1667–1670CrossRefGoogle Scholar
  59. 59.
    Yu L, Li XL, Guo ZM, Zhang XL, Liang XM (2009) Hydrophilic interaction chromatography based enrichment of glycopeptides by using click maltose: a matrix with high selectivity and glycosylation heterogeneity coverage. Chem Eur J 15:12618–12626PubMedCrossRefGoogle Scholar
  60. 60.
    Jin GW, Yu DP, Guo ZM, Yang D, Zhang HT, Shen AJ, Yan JY, Liang XM (2016) Preparation of glyco-silica materials via thiol-ene click chemistry for adsorption and separation. RSC Adv 6:8584–8587CrossRefGoogle Scholar
  61. 61.
    Zhao YY, Yu L, Guo ZM, Li XL, Liang XM (2011) Reversed-phase depletion coupled with hydrophilic affinity enrichment for the selective isolation of N-linked glycopeptides by using Click OEG-CD matrix. Anal Bioanal Chem 399:3359–3365PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao YY, Li XL, Yan JY, Guo ZM, Liang XM (2012) Phosphopeptide enrichment and fractionation by using Click OEG-CD matrix. Anal Methods 4:1244–1251CrossRefGoogle Scholar
  63. 63.
    Jensen PH, Mysling S, Hojrup P, Jensen ON (2013) Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). Methods Mol Biol 951:131–144PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou W, Wang PG, Krynitsky AJ, Rader JI (2011) Rapid and simultaneous determination of hexapeptides (Ac-EEMQRR-amide and H2N-EEMQRR-amide) in anti-wrinkle cosmetics by hydrophilic interaction liquid chromatography-solid phase extraction preparation and hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Chromatogr A 1218:7956–7963PubMedCrossRefGoogle Scholar
  65. 65.
    Turrell E, Stobo L, Lacaze JP, Piletsky S, Piletska E (2008) Optimization of hydrophilic interaction liquid chromatography/mass spectrometry and development of solid-phase extraction for the determination of paralytic shellfish poisoning toxins. J AOAC Int 91:1372–1386PubMedGoogle Scholar
  66. 66.
    Lindberg RH, Fedorova G, Blum KM, Pulit-Prociak J, Gillman A, Jarhult J, Appelblad P, Soderstrom H (2015) Online solid phase extraction liquid chromatography using bonded zwitterionic stationary phases and tandem mass spectrometry for rapid environmental trace analysis of highly polar hydrophilic compounds—application for the antiviral drug Zanamivir. Talanta 141:164–169PubMedCrossRefGoogle Scholar
  67. 67.
    Cao LW, Zhang Y, Chen LL, Shen AJ, Zhang XW, Ren SF, Gu JX, Yu L, Liang XM (2014) Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst 139:4538–4546PubMedCrossRefGoogle Scholar
  68. 68.
    Li XL, Liu YF, Shen AJ, Wang CR, Yan JY, Zhao WJ, Liang XM (2014) Efficient purification of active bufadienolides by a class separation method based on hydrophilic solid-phase extraction and reversed-phase high performance liquid chromatography. J Pharm Biomed 97:54–64CrossRefGoogle Scholar
  69. 69.
    Feng XM, Shen AJ, Li XQ, Li XL, Zou LJ, Liang XM (2014) Highly selective enrichment of multi-phosphopeptides by click TE-GSH. Acta Chim Sin 72:1085–1091CrossRefGoogle Scholar
  70. 70.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  71. 71.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552PubMedCrossRefGoogle Scholar
  72. 72.
    El Haskouri J, de Zárate DO, Guillem C, Latorre J, Caldés M, Beltrán A, Beltrán D, Descalzo AB, Rodríguez-López G, Martínez-Máñez R, Marcos MD, Amorós P (2002) Silica-based powders and monoliths with bimodal pore systems. Chem Commun 4:330–331CrossRefGoogle Scholar
  73. 73.
    Pérez-Cabero M, Esteve-Turrillas FA, Beltrán D, Amorós P (2010) Hierarchical porous carbon with designed pore architecture and study of its adsorptive properties. Solid Sta Sci 12:15–25CrossRefGoogle Scholar
  74. 74.
    Wang X, Yang FF, Zhang LP, Huang YP, Liu ZS (2018) A polyhedral oligomeric silsesquioxane/molecular sieve codoped molecularly imprinted polymer for gastroretentive drug-controlled release in vivo. Biomater Sci 6:3170–3177PubMedCrossRefGoogle Scholar
  75. 75.
    Feng J, He X, Liu X, Sun X, Li Y (2016) Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners. J Chromatogr A 1465:20–29PubMedCrossRefGoogle Scholar
  76. 76.
    Valcárcel M, Cárdenas S, Simonet BM, Moliner-Martínez Y, Lucena R (2008) Carbon nanostructures as sorbent materials in analytical processes. TRAC-Trends Anal Chem 27:34–43CrossRefGoogle Scholar
  77. 77.
    Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC-Trends Anal Chem 51:33–43CrossRefGoogle Scholar
  78. 78.
    He H, Klinowski J, Forster M (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56CrossRefGoogle Scholar
  79. 79.
    Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G (2013) Application of nanomaterials in sample preparation. J Chromatogr A 1300:2–16PubMedCrossRefGoogle Scholar
  80. 80.
    Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883PubMedCrossRefGoogle Scholar
  81. 81.
    Jiménez-Soto JM, Cárdenas S, Valcárcel M (2009) Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction. J Chromatogr A 1216:5626–5633PubMedCrossRefGoogle Scholar
  82. 82.
    Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials (Basel) 7:3919–3945CrossRefGoogle Scholar
  83. 83.
    Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Yang H, Kose EM, Chen BL, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757PubMedCrossRefGoogle Scholar
  84. 84.
    Niu J, Wang X, Lv J, Li Y, Tang B (2014) Luminescent nanoprobes for in-vivo bioimaging. TrAC-Trends Anal Chem 58:112–119CrossRefGoogle Scholar
  85. 85.
    Selmani S, Yue Shen M, Schipper DJ (2017) Iptycene-functionalized silica gel for the purification of fullerenes using flash chromatography. RSC Adv 7:19026–19029CrossRefGoogle Scholar
  86. 86.
    Maeda Y, Takano Y, Sagara A, Hashimoto M, Kanda M, Kimura SI, Lian Y, Nakahodo T, Tsuchiya T, Wakahara T, Akasaka T, Hasegawa T, Kazaoui S, Minami N, Lu J, Nagase S (2008) Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method. Carbon 46:1563–1569CrossRefGoogle Scholar
  87. 87.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214PubMedCrossRefGoogle Scholar
  88. 88.
    Ibrahim WA, Nodeh HR, Sanagi MM (2016) Graphene-based materials as solid phase extraction sorbent for trace metal ions, organic compounds, and biological sample preparation. Crit Rev Anal Chem 46:267–283PubMedCrossRefGoogle Scholar
  89. 89.
    Ravelo-Pérez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217:2618–2641PubMedCrossRefGoogle Scholar
  90. 90.
    Xu J, Ouyang G (2017) Development of novel solid-phase microextraction fibers. In: Ouyang G, Jiang R (eds) Solid phase microextraction. Springer, GermanyGoogle Scholar
  91. 91.
    Silva MM, Arruda MAZ, Krug FJ, Oliveira PV, Queiroz ZF, Gallego M, Valcárcel M (1998) On-line separation and preconcentration of cadmium, lead, nickel in a fullerene (C60) minicolumn coupled to flow injection tungsten coil atomic absorption spectrometry. Anal Chim Acta 368:255–263CrossRefGoogle Scholar
  92. 92.
    Soylak M, Unsal YE (2011) Use of multiwalled carbon nanotube disks for the SPE of some heavy metals as 8-hydroxquinoline complexes. JAOAC Int 94:1297–1303Google Scholar
  93. 93.
    Yang L, Vail MA, Dadson A, Lee ML, Asplund MC, Linford MR (2009) Functionalization of deuterium- and hydrogen-terminated diamond particles with mono- and multilayers using di-tert-amyl peroxide and their use in solid phase extraction. Chem Mat 21:4359–4365CrossRefGoogle Scholar
  94. 94.
    Xiao CH, Liu ZL, Wang ZY, Wu CY, Han HM (2000) Use of polymeric fullerene as a new coating for solid-phase microextraction. Chromatographia 52:803–809CrossRefGoogle Scholar
  95. 95.
    Piñeiro-García A, González-Alatorre G, Tristan F, Fierro-Gonzalez JC, Vega-Díaz SM (2018) Simple preparation of reduced graphene oxide coatings for solid phase micro-extraction (SPME) of furfural to be detected by gas chromatography/mass spectrometry. Mater Chem Phys 213:556–561CrossRefGoogle Scholar
  96. 96.
    Shi Z, Li Q, Xu D, Huai Q, Zhang H (2016) Graphene-based pipette tip solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice. J Sep Sci 39:4391–4397PubMedCrossRefGoogle Scholar
  97. 97.
    Wang JX, Jiang DQ, Gu ZY, Yan YP (2006) Multiwalled carbon nanotubes coated fibers for solid phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137:8–14PubMedCrossRefGoogle Scholar
  98. 98.
    Wu L, Liu F, Wang G, Guo Z, Zhao Z (2016) Bifunctional monomer molecularly imprinted polymers based on the surface of multiwalled carbon nanotubes for solid-phase extraction of tartrazine from drinks. RSC Adv 6:464–471CrossRefGoogle Scholar
  99. 99.
    Farhadi K, Matin AA, Amanzadeh H, Biparva P, Tajik H, Farshid AA, Pirkharrati H (2014) A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC–ECD. Talanta 128:493–499PubMedCrossRefGoogle Scholar
  100. 100.
    Yang Y, Chen J, Shi JP (2012) Determination of diethylstilbestrol in milk using carbon nanotube reinforced hollow fiber solid-phase microextraction combined with high-performance liquid chromatography. Talanta 97:222–228PubMedCrossRefGoogle Scholar
  101. 101.
    Boonjob W, Miró M, Segundo MA, Cerdà V (2011) Flow-through dispersed carbon nanofiber-based microsolid-phase extraction coupled to liquid chromatography for automatic determination of trace levels of priority environmental pollutants. Anal Chem 83:5237–5244PubMedCrossRefGoogle Scholar
  102. 102.
    Polo-Luque ML, Simonet BM, Valcárcel M (2013) Solid-phase extraction of nitrophenols in water by using a combination of carbon nanotubes with an ionic liquid coupled in-line to CE. Electrophoresis 34:304–308PubMedCrossRefGoogle Scholar
  103. 103.
    Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction. Anal Chim Acta 714:76–81PubMedCrossRefGoogle Scholar
  104. 104.
    Attari SG, Bahrami A, Shahna FG, Heidari M (2014) Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air. J Environ Health Sci Eng 12:123–130PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165:10–17PubMedCrossRefGoogle Scholar
  106. 106.
    Ke Y, Zhu F, Zeng F, Luan T, Su C, Ouyang G (2013) Preparation of graphene-coated solid-phase microextraction fiber and its application on organochlorine pesticides determination. J Chromatogr A 1300:187–192PubMedCrossRefGoogle Scholar
  107. 107.
    Baena JR, Gallego M, Valcárcel M (2000) Group speciation of metal dithiocarbamates by sorption on C60 fullerene. Analyst 125:1495–1499CrossRefGoogle Scholar
  108. 108.
    Argente-García AI, Moliner-Martínez Y, López-García E, Campíns-Falcó P, Herráez-Hernández R (2016) Application of carbon nanotubes modified coatings for the determination of amphetamines by in-tube solid-phase microextraction and capillary liquid chromatography. Separations 3:7CrossRefGoogle Scholar
  109. 109.
    Pier GB, Lyczak JB, Wetzler LM (2004) Immunology, infection, and immunity. ASM Press. ISBN 978-1-55581-246-1Google Scholar
  110. 110.
    Moser AC, Hage DS (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hage DS, Phillips TM (2005) Immunoaffinity chromatography. In: Hage DS (ed) Handbook of affinity chromatography. CRC Press, Boca Raton, pp 127–172CrossRefGoogle Scholar
  112. 112.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tamashiro WM, Augusto EFP (2008) Monoclonal antibodies. In: Castilho L, Moraes A, Augusto E, Butler M (eds) Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis, New York, pp 409–435Google Scholar
  114. 114.
    Narhi LO, Caughey DJ, Horan TP, Kita Y, Chang D, Arakawa T (1997) Fractionation and characterization of polyclonal antibodies using three progressively more chaotropic solvents. Anal Biochem 253:246–252PubMedCrossRefGoogle Scholar
  115. 115.
    Mallik R, Hage DS (2006) Affinity monolith chromatography. J Sep Sci 29:1686–1704PubMedCrossRefGoogle Scholar
  116. 116.
    Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41:12–29PubMedCrossRefGoogle Scholar
  117. 117.
    Esteve-Turrillas FA, Mercader JV, Agulló C, Abad-Somovilla A, Abad-Fuentesa A (2011) Development of immunoaffinity columns for pyraclostrobin extraction from fruit juices and analysis by liquid chromatography with UV detection. J Chromatogr A 1218:4902–4909PubMedCrossRefGoogle Scholar
  118. 118.
    Merck website. https://www.merck.com/
  119. 119.
    Kim HS, Siluk D, Wainer IW (2009) Quantitative determination of fenoterol and fenoterol derivatives in rat plasma using on-line immunoextraction and liquid chromatography/mass spectrometry. J Chromatogr A 1216:3526–3532PubMedCrossRefGoogle Scholar
  120. 120.
    Rivasseau C, Hennion MC (1999) Potential of immunoextraction coupled to analytical and bioanalytical methods (liquid chromatography, ELISA kit and phosphatase inhibition test) for an improved environmental monitoring of cyanobacterial toxins. Anal Chim Acta 399:75–87CrossRefGoogle Scholar
  121. 121.
    Le T, Esteve-Turrillas FA, Armenta S, de la Guardia M, Abad-Somovilla A (2017) Dispersive magnetic immunoaffinity extraction. Anatoxin-a determination. J Chromatogr A 1529:57–62PubMedCrossRefGoogle Scholar
  122. 122.
    Watanabe E, Yoshimura Y, Yuasa Y, Nakazawa H (2001) Immunoaffinity column clean-up for the determination of imazalil in citrus fruits. Anal Chim Acta 433:199–206CrossRefGoogle Scholar
  123. 123.
    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA (2015) Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: a promising partnership. J Chromatogr A 1426:110–117PubMedCrossRefGoogle Scholar
  124. 124.
    Sheibani A, Tabrizchi M, Ghaziaskar HS (2008) Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 75:233–238PubMedGoogle Scholar
  125. 125.
    Delaunay-Bertoncini N, Pichon V, Hennion MC (2001) Comparison of immunoextraction sorbents prepared from monoclonal and polyclonal anti-isoproturon antibodies and optimization of the appropriate monoclonal antibody-based sorbent for environmental and biological applications. Chromatographia 53:S224–S230CrossRefGoogle Scholar
  126. 126.
    Kaware M, Bronshtein A, Safi J, Van Emon JM, Chuang JC, Hock B, Kramer K, Altstein M (2006) Enzyme-linked immunosorbent assay (ELISA) and sol-gel-based immunoaffinity purification (IAP) of the pyrethroid bioallethrin in food and environmental samples. J Agric Food Chem 54:6482–6492PubMedCrossRefGoogle Scholar
  127. 127.
    Pou K, Ong H, Adam A, Lamothe P, Delahaut P (1994) Combined immunoextraction approach coupled to a chemiluminescence enzyme immunoassay for the determination of trace levels of salbutamol and clenbuterol in tissue samples. Analyst 119:2659–2662PubMedCrossRefGoogle Scholar
  128. 128.
    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA (2016) Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry. Anal Bioanal Chem 408:8559–8567PubMedCrossRefGoogle Scholar
  129. 129.
    Bagnati R, Castelli MG, Airoldi L, Oriundi MP, Ubaldi A, Fanelli R (1990) Analysis of diethylstilbestrol, dienestrol and hexestrol in biological samples by immunoaffinity extraction and gas chromatography-negative-ion chemical ionization mass spectrometry. J Chromatogr B 527:267–278CrossRefGoogle Scholar
  130. 130.
    Augusto F, Hantao LW, Noroska G, Mogollon S, Soraia C, Braga GN (2013) New materials and trends in sorbents for solid-phase extraction. TrAC-Trends Anal Chem 43:14–23CrossRefGoogle Scholar
  131. 131.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  132. 132.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  133. 133.
    Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, Li G (2015) Recent advances in aptamer-functionalized materials in sample preparation. TrAC-Trends Anal Chem 67:134–146CrossRefGoogle Scholar
  134. 134.
    Dong Y, Xu Y, Yong W, Chu X, Wang D (2014) Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr 54:1548–1561PubMedCrossRefGoogle Scholar
  135. 135.
    Pichon V, Brothier F, Combès A (2015) Aptamer-based-sorbents for sample treatment—a review. Anal Bioanal Chem 407:681–698PubMedCrossRefGoogle Scholar
  136. 136.
    Girolamo AD, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column. Food Chem 127:1378–1384PubMedCrossRefGoogle Scholar
  137. 137.
    Connor AC, McGown LB (2006) Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A 1111:115–119PubMedCrossRefGoogle Scholar
  138. 138.
    Brothier F, Pichon V (2014) Miniaturized DNA aptamer-based monolithic sorbent for selective extraction of a target analyte coupled on-line to nanoLC. Anal Bioanal Chem 406:7875–7886PubMedCrossRefGoogle Scholar
  139. 139.
    Shao N, Zhang K, Chen Y, He X, Zhang Y (2012) Preparation and characterization of DNA aptamer based spin column for enrichment and separation of histones. Chem Commun 48:6684–6686CrossRefGoogle Scholar
  140. 140.
    Deng N, Liang Z, Liang Y, Sui Z, Zhang L, Wu Q, Yang K, Zhang L, Zhang Y (2012) Aptamer modified organic-inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal Chem 84:10186–10190PubMedCrossRefGoogle Scholar
  141. 141.
    Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC-Trends Anal Chem 45:233–247CrossRefGoogle Scholar
  142. 142.
    Kim NH, Lee SJ, Moskovits M (2010) Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. Nano Lett 10:4181–4185PubMedCrossRefGoogle Scholar
  143. 143.
    Yasun E, Gulbakan B, Ocsoy I, Yuan Q, Shukoor MI, Li C, Tan W (2012) Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. Anal Chem 84:6008–6015PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Du F, Alam MN, Pawliszyn J (2014) Aptamer-functionalized solid phase microextraction–liquid chromatography/tandem mass spectrometry for selective enrichment and determination of thrombin. Anal Chim Acta 845:45–52PubMedCrossRefGoogle Scholar
  145. 145.
    Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol 10:1149–1154CrossRefGoogle Scholar
  146. 146.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81:1033–1039PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hu X, Mu L, Zhou Q, Wen J, Pawliszyn J (2011) ssDNA aptamer-based column for simultaneous removal of nanogram per liter level of illicit and analgesic pharmaceuticals in drinking water. Environ Sci Technol 45:4890–4895PubMedCrossRefGoogle Scholar
  149. 149.
    Han B, Zhao C, Yin J, Wang H (2012) High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme. J Chromatogr B 903:112–117CrossRefGoogle Scholar
  150. 150.
    Wu X, Hu J, Zhu B, Lu L, Huang X, Pang D (2011) Aptamer-targeted magnetic nanospheres as a solid-phase extraction sorbent for determination of ochratoxin A in food samples. J Chromatogr A 1218:7341–7346PubMedCrossRefGoogle Scholar
  151. 151.
    Yang X, Kong W, Hu Y, Yang M, Huang L, Zhao M, Ouyang Z (2014) Aptamer-affinity column clean-up coupled with ultra high performance liquid chromatography and fluorescence detection for the rapid determination of ochratoxin A in ginger powder. J Sep Sci 37:853–860PubMedCrossRefGoogle Scholar
  152. 152.
    Chapuis-Hugon F, du Boisbaudry A, Madru B, Pichon V (2011) New extraction sorbent based on aptamers for the determination of ochratoxin A in red wine. Anal Bioanal Chem 400:1199–1207PubMedCrossRefGoogle Scholar
  153. 153.
    Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA Aptamer. J Agric Food Chem 56:10456–10461PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hadj AW, Pichon V (2014) Characterization of oligosorbents and application to the purification of ochratoxin A from wheat extracts. Anal Bioanal Chem 406:1233–1240CrossRefGoogle Scholar
  155. 155.
    Huy GD, Jin N, Yin BC, Ye BC (2011) A novel separation and enrichment method of 17β-estradiol using aptamer-anchored microbeads. Bioprocess Biosyst Eng 34:189–195PubMedCrossRefGoogle Scholar
  156. 156.
    Murphy MB, Fuller ST, Richardson PM, Doyle SA (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 31:e110PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Zhu J, Nguyen T, Pei R, Stojanovic M, Lin Q (2012) Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12:3504–3513PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Chen L, Liu X, Su B, Li J, Jiang L, Han D, Wang S (2011) Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv Mater 23:4376–4380PubMedCrossRefGoogle Scholar
  159. 159.
    Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81:7436–7442PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Huang YF, Chang HT (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79:4852–4859PubMedCrossRefGoogle Scholar
  161. 161.
    Deng Q, Watson CJ, Kennedy RT (2003) Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J Chromatogr A 1005:123–130PubMedCrossRefGoogle Scholar
  162. 162.
    Kökpinar Ö, Walter JG, Shoham Y, Stahi F, Scheper T (2011) Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol Bioeng 108:2371–2379PubMedCrossRefGoogle Scholar
  163. 163.
    Mu L, Hu X, Wen J, Zhou Q (2013) Robust aptamer sol–gel solid phase microextraction of very polar adenosine from human plasma. J Chromatogr A 1279:7–12PubMedCrossRefGoogle Scholar
  164. 164.
    Madru B, Chapuis-Hugon F, Peyrin E, Pichon V (2009) Determination of cocaine in human plasma by selective solid-phase extraction using an aptamer-based sorbent. Anal Chem 81:7081–7086PubMedCrossRefGoogle Scholar
  165. 165.
    Jr Dick L W, McGown LB (2004) Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry. Anal Chem 76:3037–3041CrossRefGoogle Scholar
  166. 166.
    Chen Y, Deng N, Wu C, Liang Y, Jiang B, Yang K, Liang Z, Zhang L, Zhang Y (2016) Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin. Talanta 154:555–559PubMedCrossRefGoogle Scholar
  167. 167.
    Koh Y, Lee BR, Yoon HJ, Jang YH, Lee YS, Kim YK, Kim BG (2012) Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection. Anal Bioanal Chem 404:2267–2275PubMedCrossRefGoogle Scholar
  168. 168.
    Cole JR, Dick LW Jr, Morgan EJ, McGown LB (2007) Affinity capture and detection of immunoglobulin E in human serum using an aptamer-modified surface in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 79:273–279PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408–17410PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Romig TS, Bell C, Drolet DW (1999) Aptamer affinity chromatography: combinatorial chemistry applied to protein purification. J Chromatogr B 731:275–284CrossRefGoogle Scholar
  171. 171.
    Aslipashaki SN, Khayamian T, Hashemian Z (2013) Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids. J Chromatogr B 925:26–32CrossRefGoogle Scholar
  172. 172.
    Madru B, Chapuis-Hugon F, Pichon V (2011) Novel extraction supports based on immobilised aptamers: evaluation for the selective extraction of cocaine. Talanta 85:616–624PubMedCrossRefGoogle Scholar
  173. 173.
    Nguyen TH, Pei R, Stojanovic M, Lin Q (2011) Demonstration and characterization of biomolecular enrichment on microfluidic aptamer-functionalized surfaces. Sens Actuators, B 155:58–66CrossRefGoogle Scholar
  174. 174.
    Nguyen T, Pei R, Stojanovic M, Lin Q (2009) An aptamer-based microfluidic device for thermally controlled affinity extraction. Microfluid Nanofluidic 6:479–487CrossRefGoogle Scholar
  175. 175.
    Nguyen T, Pei R, Landry DW, Stojanovic Lin Q (2011) Microfluidic aptameric affinity sensing of vasopressin for clinical diagnostic and therapeutic applications. Sens Actuators, B 154:59–66CrossRefGoogle Scholar
  176. 176.
    Chung WJ, Kim MS, Cho S, Park SS, Kim JH, Kim YK, Kim BG, Lee YS (2005) Microaffinity purification of proteins based on photolytic elution: toward an efficient microbead affinity chromatography on a chip. Electrophoresis 26:694–702PubMedCrossRefGoogle Scholar
  177. 177.
    Zhao Q, Li XF, Shao Y, Le XC (2008) Aptamer-based affinity chromatographic assays for thrombin. Anal Chem 80:7586–7593PubMedCrossRefGoogle Scholar
  178. 178.
    Gao C, Sun X, Woolley AT (2013) Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths. J Chromatogr A 1291:92–96PubMedCrossRefGoogle Scholar
  179. 179.
    Zhao Q, Li XF, Le XC (2008) Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal Chem 80:3915–3920PubMedCrossRefGoogle Scholar
  180. 180.
    Cho S, Lee SH, Chung WJ, Kim YK, Lee YS, Kim BG (2004) Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739PubMedCrossRefGoogle Scholar
  181. 181.
    Zhang X, Zhu S, Deng C, Zhang X (2012) Highly sensitive thrombin detection by matrix assisted laser desorption ionization-time of flight mass spectrometry with aptamer functionalized core–shell Fe3O4@C@Au magnetic microspheres. Talanta 88:295–302PubMedCrossRefGoogle Scholar
  182. 182.
    Jiang HP, Zhu JX, Peng C, Gao J, Zheng F, Xiao YX, Feng YQ, Yuan BF (2014) Facile one-pot synthesis of a aptamer-based organic-silica hybrid monolithic capillary column by “thiol–ene” click chemistry for detection of enantiomers of chemotherapeutic anthracyclines. Analyst 139:4940–4946PubMedCrossRefGoogle Scholar
  183. 183.
    Zargar T, Khayamian T, Jafari MT (2017) Immobilized aptamer paper spray ionization source for ion mobility spectrometry. J Pharmaceut Biomed Anal 132:232–237CrossRefGoogle Scholar
  184. 184.
    Hashemian Z, Khayamian T, Saraji M (2015) Aptamer-conjugated magnetic nanoparticles for extraction of adenosine from urine followed by electrospray ion mobility spectrometry. J Pharmaceut Biomed Anal 107:244–250CrossRefGoogle Scholar
  185. 185.
    Hashemian Z, Khayamian T, Saraji M (2015) Anticodeine aptamer immobilized on a Whatman cellulose paper for thin-film microextraction of codeine from urine followed by electrospray ionization ion mobility spectrometry. Anal Bioanal Chem 407:1615–1623PubMedCrossRefGoogle Scholar
  186. 186.
    Roberto Gama M, Grespan Bottoli CB (2017) Molecularly imprinted polymers for bioanalytical sample preparation. J Chromatogr B 1043:107–121CrossRefGoogle Scholar
  187. 187.
    Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615PubMedCrossRefGoogle Scholar
  188. 188.
    Yemiş F, Alkan P, Yenigül B, Yenigül M (2013) Molecularly imprinted polymers and their synthesis by different methods. Polym Polym Compos 21:145–150Google Scholar
  189. 189.
    Sellergren B (1994) Direct drug determination by selective sample enrichment on an imprinted polymer. Anal Bioanal Chem 66:1578–1582CrossRefGoogle Scholar
  190. 190.
    Płotka-Wasylka J, Szczepaska N, de la Guardia M, Namiesnik J (2016) Modern trends in solid phase extraction: new sorbent media. TrAC-Tends Anal Chem 77:23–43CrossRefGoogle Scholar
  191. 191.
    Kubo T, Otsuka K (2016) Recent progress for the selective pharmaceutical analyses using molecularly imprinted adsorbents and their related techniques: a review. J Pharm Biomed Anal 130:68–80PubMedCrossRefGoogle Scholar
  192. 192.
    Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211PubMedCrossRefGoogle Scholar
  193. 193.
    Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942PubMedCrossRefGoogle Scholar
  194. 194.
    Song X, Xu S, Chen L, Wei Y, Xiong H (2014) Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 131:40766CrossRefGoogle Scholar
  195. 195.
    Kubo T, Hosoya K, Otsuka K (2014) Molecularly imprinted adsorbents for selective separation and/or concentration of environmental pollutants. Anal Sci 30:97–104PubMedCrossRefGoogle Scholar
  196. 196.
    Fischer L, Muller R, Ekberg B, Mosbach K (1991) Direct enantioseparation of beta-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting. J Am Chem Soc 113:9358–9360CrossRefGoogle Scholar
  197. 197.
    Sellergren B, Lepisto M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions—NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  198. 198.
    Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26PubMedCrossRefGoogle Scholar
  199. 199.
    Madikizela LM, Chimuka L (2016) Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. J Pharm Biomed Anal 128:210–215PubMedCrossRefGoogle Scholar
  200. 200.
    Lu W, Wang X, Wu X, Liu D, Li J, Chen L, Zhang X (2017) Multi-template imprinted polymers for simultaneous selective solid-phase extraction of six phenolic compounds in water samples followed by determination using capillary electrophoresis. J Chromatogr A 1483:30–39PubMedCrossRefGoogle Scholar
  201. 201.
    Hua X, Wu X, Yang F, Wang Q, He C, Liu S (2016) Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta 148:29–36CrossRefGoogle Scholar
  202. 202.
    Feng MX, Wang GN, Yang K, Liu HZ, Wang JP (2016) Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control 69:171–176CrossRefGoogle Scholar
  203. 203.
    Wei S, Liu Y, Yan Z, Liu L (2015) Molecularly imprinted solid phase extraction coupled to high performance liquid chromatography for determination of aflatoxin M1 and B1 in foods and feeds. RSC Adv 5:20951–20960CrossRefGoogle Scholar
  204. 204.
    Gallo P, Di Marco Pisciottano I, Esposito F, Fasano E, Scognamiglio G, Mita GD, Cirillo T (2017) Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem 220:406–412PubMedCrossRefGoogle Scholar
  205. 205.
    Wang Q, Zhang X, Xu Z, Gao H (2015) Simultaneous determination of three trace organophosphorus pesticide residues in vegetables using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. Food Anal Methods 8:2044–2051CrossRefGoogle Scholar
  206. 206.
    He X, Tan L, Wu W, Wang J (2016) Determination of sulfadiazine in eggs using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. J Sep Sci 39:2204–2212PubMedCrossRefGoogle Scholar
  207. 207.
    Wan W, Han Q, Zhang X, Xie Y, Sun J, Ding M (2015) Selective enrichment of proteins for MALDI-TOF MS analysis based on molecular imprinting. Chem Commun 51:3541–3544CrossRefGoogle Scholar
  208. 208.
    Yang Y, Li Q, Fang G, Wang S (2016) Preparation and evaluation of novel surface molecularly imprinted polymers by sol-gel process for online solid-phase extraction coupled with high performance liquid chromatography to detect trace patulin in fruit derived products. RSC Adv 6:54510–54517CrossRefGoogle Scholar
  209. 209.
    Geng HR, Miao SS, Jin SF, Yang H (2015) A newly developed molecularly imprinted polymer on the surface of TiO2 for selective extraction of triazine herbicides residues in maize, water, and soil. Anal Bioanal Chem 407:8803–8812PubMedCrossRefGoogle Scholar
  210. 210.
    Chen H, Son S, Zhang F, Yan J, Li Y, Ding H, Ding L (2015) Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J Chromatogr B 983–984:32–38CrossRefGoogle Scholar
  211. 211.
    Bakas I, Oujji NB, Istamboulie G, Piletsky S, Piletsky E, Ait-Addi E, Ait-Ichou I, Noguer T, Rouillon R (2014) Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil. Talanta 125:313–318PubMedCrossRefGoogle Scholar
  212. 212.
    Liu H, Gan N, Chen Y, Ding Q, Huang J, Lin S, Cao Y, Li T (2016) Novel method for the rapid and specific extraction of multiple β2-agonist residues in food by tailor-made monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry. J Sep Sci 39:3578–3585PubMedCrossRefGoogle Scholar
  213. 213.
    Tang Y, Lan J, Gao X, Liu X, Zhang D, Wei L, Gao Z, Li J (2016) Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method. Food Chem 190:952–959PubMedCrossRefGoogle Scholar
  214. 214.
    Giovannoli C, Passini C, Di Nardo F, Anfonssi L, Baggiani C (2014) Determination of ochratoxin A in Italian red wines by molecularly imprinted solid phase extraction and HPLC analysis. J Agric Food Chem 62:5220–5225PubMedCrossRefGoogle Scholar
  215. 215.
    Sun H, Li Y, Yang J, Sun X, Huang C, Zhang X, Chen J (2016) Preparation of dummy-imprinted polymers by Pickering emulsion polymerization for the selective determination of seven bisphenols from sediment samples. J Sep Sci 39:2188–2195PubMedCrossRefGoogle Scholar
  216. 216.
    Roszko M, Szymczyk K, Jedrzejczak R (2015) Simultaneous separation of chlorinated/brominated dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers and their methoxylated derivatives from hydroxylated analogues on molecularly imprinted polymers prior to gas/liquid chromatography and mass spectrometry. Talanta 144:171–183PubMedCrossRefGoogle Scholar
  217. 217.
    Li H, Li D (2015) Preparation of a pipette tip-based molecularly imprinted solid-phase microextraction monolith by epitope approach and its application for determination of enkephalins in human cerebrospinal fluid. J Pharm Biomed 115:330–338CrossRefGoogle Scholar
  218. 218.
    Ten-Doménech I, Martínez-Pérez-Cejuela H, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martinez JM (2017) Molecularly imprinted polymers for selective solid-phase extraction of phospholipids from human milk samples. Microchim Acta 184:1–9CrossRefGoogle Scholar
  219. 219.
    Liu J, Deng Q, Tao D, Yang K, Zhang L, Liang Z, Zhang Y (2014) Preparation of protein imprinted materials by hierarchical imprinting techniques and application in selective depletion of albumin from human serum. Sci Rep 4:5487PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hashemi M, Nazari Z, Bigdelifam D (2017) A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of l-cysteine. Microchim Acta 184:2523–2532CrossRefGoogle Scholar
  221. 221.
    Wu N, Luo Z, Ge Y, Guo P, Du K, Tang W, Du W, Zeng A, Chang C, Fu Q (2016) A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal 6:157–164PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    El-Beqqali A, Abdel-Rehim M (2016) Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: I. Determination of methadone in human plasma utilizing liquid chromatography-tandem mass spectrometry. Anal Chim Acta 936:116–122PubMedCrossRefGoogle Scholar
  223. 223.
    Cela-Pérez MC, Bates F, Jiménez-Morigosa C, Lendoiro E, de Castro A, Cruz A, Lopez-Rivadulla M, López-Vilariño JM, González-Rodríguez MV (2016) Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid. J Chromatogr A 1429:53–64PubMedCrossRefGoogle Scholar
  224. 224.
    Sorribes-Soriano A, Esteve-Turrillas FA, Armenta S, de la Guardia M, Herrero-Martínez JM (2017) Cocaine abuse determination by ion mobility spectrometry using molecular imprinting. J Chromatogr A 1481:23–30PubMedCrossRefGoogle Scholar
  225. 225.
    Martinez-Sena T, Armenta S, de la Guardia M, Esteve-Turrillas FA (2016) Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J Pharm Biomed Anal 131:48–53PubMedCrossRefGoogle Scholar
  226. 226.
    Sarafraz-Yazdi A, Razavi N (2015) Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC-Trends Anal Chem 73:81–90CrossRefGoogle Scholar
  227. 227.
    Zhang M, Zeng J, Wang Y, Chen X (2013) Developments and trends of molecularly imprinted solid-phase microextraction. J Chromatogr Sci 51:577–586PubMedCrossRefGoogle Scholar
  228. 228.
    Zhang N, Hu B (2012) Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection. Anal Chim Acta 723:54–60PubMedCrossRefGoogle Scholar
  229. 229.
    Li T, Chen S, Li H, Li Q, Wu L (2011) Preparation of an ion-imprinted fiber for the selective removal of Cu2+. Langmuir 27:6753–6758PubMedCrossRefGoogle Scholar
  230. 230.
    Barahona F, Díaz-Alvarez M, Turiel E, Martín-Esteban A (2016) Molecularly imprinted polymer-coated hollow fiber membrane for the microextraction of triazines directly from environmental waters. J Chromatogr A 1442:12–18PubMedCrossRefGoogle Scholar
  231. 231.
    Li JW, Wang YL, Yan S, Li XJ, Pan SY (2016) Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem 192:260–267PubMedCrossRefGoogle Scholar
  232. 232.
    Manbohi A, Shamaeli E, Alizadeh N (2014) Nanostructure conducting molecularly imprinted polypyrrole film as a selective sorbent for benzoate ion and its application in spectrophotometric analysis of beverage samples. Food Chem 155:186–191PubMedCrossRefGoogle Scholar
  233. 233.
    Moein MM, Javanbakht M, Karimi M, Akbari-adergani B (2015) Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled online with high performance liquid chromatography for selective determination of acesulfame. Talanta 134:340–347PubMedCrossRefGoogle Scholar
  234. 234.
    Hu XG, Fan YN, Zhang Y, Dai GM, Cai QL, Cao YJ, Guo CJ (2012) Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta 731:40–48PubMedCrossRefGoogle Scholar
  235. 235.
    Lian HX, Hu YL, Li GK (2014) Novel metal-ion-mediated, complex-imprinted solid-phase microextraction fiber for the selective recognition of thiabendazole in citrus and soil samples. J Sep Sci 37:106–113PubMedCrossRefGoogle Scholar
  236. 236.
    Lin ZA, Lin Y, Sun XB, Yang HH, Zhang L, Chen GN (2013) One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme. J Chromatogr A 1284:8–16PubMedCrossRefGoogle Scholar
  237. 237.
    Lan H, Gan N, Pan D, Hu F, Li T, Long N, Shen H, Feng Y (2014) Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. J Chromatogr A 1365:35–44PubMedCrossRefGoogle Scholar
  238. 238.
    Hu Y, Wang Y, Chen X, Hu Y, Li G (2010) A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples. Talanta 80:2099–2105PubMedCrossRefGoogle Scholar
  239. 239.
    Liu MH, Li MJ, Qiu B, Chen X, Chen GN (2010) Synthesis and applications of diethylstil- bestrol-based molecularly imprinted polymer-coated hollow fiber tube. Anal Chim Acta 663:33–38PubMedCrossRefGoogle Scholar
  240. 240.
    Barahona F, Turiel E, Martin-Esteban A (2011) Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Anal Chim Acta 694:83–89PubMedCrossRefGoogle Scholar
  241. 241.
    Wang S, Wei J, Hao TT, Guo ZT (2012) Determination of ractopamine in pork by using electrochemiluminescence inhibition method combined with molecularly imprinted stir bar sorptive extraction. J Electroanal Chem 664:146–151CrossRefGoogle Scholar
  242. 242.
    Xu Z, Song C, Hu Y, Li G (2011) Molecularly imprinted stir bar sorptive extraction coupled with high performance liquid chromatography for trace analysis of sulfa drugs in complex samples. Talanta 85:97–103PubMedCrossRefGoogle Scholar
  243. 243.
    Chen Y, Feng T, Li G, Hu Y (2015) Molecularly imprinted polymer as a novel solid phase microextraction coating for the selective enrichment of trace imidazolinones in rice, peanut, and soil. J Sep Sci 38:301–308PubMedCrossRefGoogle Scholar
  244. 244.
    Tan F, Deng MJ, Liu X, Zhao HX, Li XN, Quan X, Chen JW (2011) Evaluation of a novel microextraction technique for aqueous samples: porous membrane envelope filled with multiwalled carbon nanotubes coated with molecularly imprinted polymer. J Sep Sci 34:707–715PubMedCrossRefGoogle Scholar
  245. 245.
    Díaz-Alvarez M, Smith SP, Spivak DA, Martín-Esteban A (2015) Preparation of molecularly imprinted polymeric fibers using a single bifunctional monomer for the solid-phase microextraction of parabens from environmental solid samples. J Sep Sci 39:552–558PubMedCrossRefGoogle Scholar
  246. 246.
    Terzopoulou Z, Papageorgiou M, Kyzas GZ, Bikiaris DN, Lambropoulou DA (2016) Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices. Anal Chim Acta 913:63–75PubMedCrossRefGoogle Scholar
  247. 247.
    Turiel E, Díaz-Alvarez M, Martín-Esteban A (2016) Supported liquid membrane protected molecularly imprinted beads for the solid phase microextraction of triazines from environmental waters. J Chromatogr A 1432:1–6PubMedCrossRefGoogle Scholar
  248. 248.
    Khorrami AR, Rashidpur A (2012) Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry. Anal Chim Acta 727:20–25CrossRefGoogle Scholar
  249. 249.
    Zheng F, Zhang N, Hu B (2011) Mn(II) imprinted 3-mercaptopropyltrimethoxysilane (MPTS)-silica coated capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of trace Mn(II) in biological samples. J Anal Atom Spectrom 26:1521–1525CrossRefGoogle Scholar
  250. 250.
    Lin ZA, Wang J, Tan XQ, Sun LX, Yu RF, Yang HH, Chen GN (2013) Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment. J Chromatogr A 1319:141–147PubMedCrossRefGoogle Scholar
  251. 251.
    Golsefidi MA, Es’haghi Z, Sarafraz-Yazdi A (2012) Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber-solid phase microextraction of chlorogenic acid in medicinal plants. J Chromatogr A 1229:24–29PubMedCrossRefGoogle Scholar
  252. 252.
    Szultka M, Szeliga J, Jackowski M, Buszewski B (2012) Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn. Anal Bioanal Chem 403:785–796PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Gomez-Caballero A, Guerreiro A, Karim K, Piletsky S, Goicolea MA, Barrio RJ (2011) Chiral imprinted polymers as enantiospecific coatings of stir bar sorptive extraction devices. Biosens Bioelectron 28:25–32PubMedCrossRefGoogle Scholar
  254. 254.
    Liu X, Wang XC, Tan F, Zhao HX, Quan X, Chen JW, Li LJ (2012) An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Anal Chim Acta 727:26–33PubMedCrossRefGoogle Scholar
  255. 255.
    Deng DL, Zhang JY, Chen C, Hou XL, Su YY, Wu L (2012) Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. J Chromatogr A 1219:195–200PubMedCrossRefGoogle Scholar
  256. 256.
    de Faria HD, de Carvalho Abrão LC, Gonçalves Santos M, Barbosa AF, Costa Figueiredo E (2017) New advances in restricted access materials for sample preparation: a review. Anal Chim Acta 959:43–65PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Francesc A. Esteve-Turrillas
    • 1
    Email author
  • Sergio Armenta
    • 1
  • Salvador Garrigues
    • 1
  • Miguel de la Guardia
    • 1
  1. 1.Department of Analytical ChemistryUniversity of ValenciaBurjassot, ValenciaSpain

Personalised recommendations