Advertisement

Mass Spectrometry-Based Direct Analytical Techniques

  • Renata MarcinkowskaEmail author
  • Klaudia Pytel
  • Bożena Zabiegała
Chapter
  • 492 Downloads
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Direct analysis of samples is considered as one of the most environmentally sustainable solutions in analytical chemistry. In the ideal case, such solutions do not require sample preparation and analytes separation steps, therefore do not consumpt harmful substances (or consumpt only minimum amounts of them) and do not generate hazardous waste. Technical solutions for direct analysis also offer miniaturized and field-portable analyzers or allow for remote measurements, posing no risk for human health. Among available direct analytical techniques, mass spectrometry-based solutions evolved tremendously in recent years and therefore gained a huge popularity, which fostered their implementation in a wide range of areas of interest. In this chapter, MS-based direct analytical techniques providing environmentally friendly analysis of samples of even complex matrix composition were discussed. They were characterized in the context of principles of measurement, advantages, and limitations as well as fields of their applications. Also, important aspects of their applicability were highlighted. Finally, some future trends in direct analysis field were indicated.

Keywords

Direct analysis Mass spectrometry Real-time analysis Ambient mass spectrometry DART-MS DESI-MS PTR-MS SIFT-MS LA-ICP-MS SIMS 

References

  1. 1.
    Anastas PT, Williamson TC (eds) (1996) Green chemistry: designing chemistry for the environment. American Chemical Series Books, Washington, DC, pp 1–20Google Scholar
  2. 2.
    Namieśnik J (2001) Green analytical chemistry–some remarks. J Sep Sci 24(2):151–153CrossRefGoogle Scholar
  3. 3.
    Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TrAC 27(6):497–511Google Scholar
  4. 4.
    Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry—theory and practice. Chem Soc Rev 39(8):2869–2878PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    de la Guardia M, Garrigues S (eds) (2012) The concept of green analytical chemistry. In: Handbook of green analytical chemistry. Wiley, New York, pp 1–16Google Scholar
  6. 6.
    Tobiszewski M, Namieśnik J (2012) Direct chromatographic methods in the context of green analytical chemistry. TrAC-Trends Anal Chem 35:67–73CrossRefGoogle Scholar
  7. 7.
    Pirro V, Jarmusch AK, Vincenti M, Cooks RG (2015) Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Anal Chim Acta 861:47–54PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Griffith J (2008) A brief history of mass spectrometry. Anal Chem 80(15):5678–5683CrossRefGoogle Scholar
  9. 9.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization–principles and practice. Mass Spectrom Rev 9(1):37–70CrossRefGoogle Scholar
  10. 10.
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311(5767):1566–1570PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM, Benassi M, Cunha IBS, Eberlin MN (2010) Ambient mass spectrometry: bringing MS into the “real world”. Anal Bioanal Chem 398(1):265–294PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Venter A, Nefliu M, Cooks RG (2008) Ambient desorption ionization mass spectrometry. TrAC-Trends Anal Chem 27(4):284–290CrossRefGoogle Scholar
  13. 13.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77(8):2297–2302PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Vickerman JC (2011) Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI? Analyst 136(11):2199–2217PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chen H, Cotte-Rodriguez I, Cooks RG (2006) cis-Diol functional group recognition by reactive desorption electrospray ionization (DESI). Chem Commun 6:597–599CrossRefGoogle Scholar
  17. 17.
    Mulligan CC, MacMillan DK, Noll RJ, Cooks RG (2007) Fast analysis of high-energy compounds and agricultural chemicals in water with desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 21:3729–3736PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS (2005) Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal Chem 77(23):7572–7580PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hu Q, Talaty N, Noll RJ, Cooks RG (2006) Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun Mass Spectrom 20(22):3403–3408PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bereman MS, Nyadong L, Fernandez FM, Muddiman DC (2006) Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 20(22):3409–3411PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wiseman JM, Laughlin BC (2007) Desorption electrospray ionization (DESI) mass spectrometry: a brief introduction and overview. Curr Sep Drug Dev 22(1):11Google Scholar
  22. 22.
    Weston DJ, Ray AD, Bristow AW (2011) Commentary: challenging convention using ambient ionization and direct analysis mass spectrometric techniques. Rapid Commun Mass Spectrom 25(6):821–825PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hajslova J, Cajka T, Vaclavik L (2011) Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. TrAC-Trends Anal Chem 30(2):204–218CrossRefGoogle Scholar
  24. 24.
    Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cody RB (2008) Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem 81(3):1101–1107CrossRefGoogle Scholar
  26. 26.
    Häbe TT, Morlock GE (2015) Quantitative surface scanning by Direct Analysis in Real Time mass spectrometry. Rapid Commun Mass Spectrom 29(6):474–484PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gross JH (2014) Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem 406(1):63–80PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Curtis M, Minier MA, Chitranshi P, Sparkman OD, Jones PR, Xue L (2010) Direct analysis in real time (DART) mass spectrometry of nucleotides and nucleosides: elucidation of a novel fragment [C5H5O] + and its in-source adducts. J Am Soc Mass Spectrom 21(8):1371–1381PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jorabchi K, Hanol K, Syage J (2013) Ambient analysis by thermal desorption atmospheric pressure photoionization. Anal Bioanal Chem 405(22):7011–7018PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maleknia SD, Vail TM, Cody RB, Sparkman DO, Bell TL, Adams MA (2009) Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry. Rapid Commun Mass Spectrom 23(15):2241–2246PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhao Y, Lam M, Wu D, Mak R (2008) Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation. Rapid Commun Mass Spectrom 22(20):3217–3224PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem 122(5):889–892CrossRefGoogle Scholar
  33. 33.
    Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82(6):2463–2471PubMedCrossRefGoogle Scholar
  34. 34.
    Król S, Zabiegała B, Namieśnik J (2010) Monitoring VOCs in atmospheric air I. On-line gas analyzers. TrAC-Trends Anal Chem 29(9):1092–1100CrossRefGoogle Scholar
  35. 35.
    Hoch G, Kok B (1963) A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101(1):160–170PubMedCrossRefGoogle Scholar
  36. 36.
    Lauritzen FR (1990) A new membrane inlet for on-line monitoring of dissolved, volatile organic compounds with mass spectrometry. Int J Mass Spectrom Ion Process 95:259–268CrossRefGoogle Scholar
  37. 37.
    Bier ME, Kotiaho T, Cooks RG (1990) Direct insertion membrane probe for selective introduction of organic compounds into a mass spectrometer. Anal Chim Acta 231(C):175–190CrossRefGoogle Scholar
  38. 38.
    Kotiaho T, Lauritsen FR, Choudhury TK, Cooks RG, Tsao GT (1991) Membrane introduction mass spectrometry. Anal Chem 63(18):875A–883ACrossRefGoogle Scholar
  39. 39.
    Davey NG, Krogh ET, Gill CG (2011) Membrane-introduction mass spectrometry (MIMS). TrAC-Trends Anal Chem 30(9):1477–1485CrossRefGoogle Scholar
  40. 40.
    Johnson RC, Koch K, Kasthurikrishnan N, Plass W, Patrick JS, Cooks RG (1997) An evaluation of low vapor pressure liquids for membrane introduction mass spectrometry. J Mass Spectrom 32(12):1299–1304CrossRefGoogle Scholar
  41. 41.
    Shevela D, Wolfgang PS, Messinger J (2018) Liquid-phase measurements of photosynthetic oxygen evolution. Photosynthesis. Humana Press, New York, pp 197–211CrossRefGoogle Scholar
  42. 42.
    Ketola R (1998) Method development in membrane inlet mass spectrometry. In: Air analysis and desorption techniques, vol 364. VTT Publications, pp 1–90Google Scholar
  43. 43.
    Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom Ion Process 173(3):191–241CrossRefGoogle Scholar
  44. 44.
    Jordan A, Haidacher S, Hanel G, Hartunge E, Märk L, Seehauser H, Märk TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom 286(2–3):122–128CrossRefGoogle Scholar
  45. 45.
    Hewitt CN, Hayward S, Tani A (2003) The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J Environ Monit 5(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    INICON Analytik Ges.m.b.H. (2014) Fundamentals of PTR-MSGoogle Scholar
  47. 47.
    Biasioli F, Gasperi F, Yeretzian C, Märk TD (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC-Trend Anal Chem 30(7):968–977CrossRefGoogle Scholar
  48. 48.
    Graus M, Müller M, Hansel A (2010) High resolution PTR-TOF: quantification and formula confirmation of VOC in real time. J Am Soc Mass Spectrom 21(6):1037–1044PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76(13):3841–3845PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hansel A, Jordan A, Warneke C, Holzinger R, Wisthaler A, Lindinger W (1999) Proton-transfer-reaction mass spectrometry: on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv. Plasma Sources Sci Technol 8:332–336CrossRefGoogle Scholar
  51. 51.
    Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109(3):861–896PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Adams NG, Smith D (1976) The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions. Int J Mass Spectrom Ion Phys 21(3–4):349–359CrossRefGoogle Scholar
  53. 53.
    Smith D, Španěl P (2011) Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst 136(10):2009–2032PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Smith D, Španěl P (2005) Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 24(5):661–700PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Prince BJ, Milligan DB, McEwan MJ (2010) Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun Mass Spectrom 24(12):1763–1769PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    SYFT Company on-line materials (2018) https://www.syft.com/mass-spectrometry-isomers/. Accessed 20 Sept 2018
  57. 57.
    Smith D, Španěl P (2015) SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 140(8):2573–2591PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Španěl P, Smith D (1999) Selected ion flow tube—mass spectrometry: detection and real-time monitoring of flavours released by food products. Rapid Commun Mass Spectrom 13(7):585–596CrossRefGoogle Scholar
  59. 59.
    Barber M, Bordoli RS, Elliott GJ, Sedgwick RD, Tyler AN (1982) Fast atom bombardment mass spectrometry. Anal Chem 54(4):645–657CrossRefGoogle Scholar
  60. 60.
    King FL, Harrison WW (1993) Glow discharge mass spectrometry. Glow discharge spectroscopies. Springer, Boston, pp 175–214CrossRefGoogle Scholar
  61. 61.
    King FL, Teng J, Steiner RE (1995) Special feature: tutorial. Glow discharge mass spectrometry: trace element determinations in solid samples. J Mass Spectrom 30(8):1061–1075CrossRefGoogle Scholar
  62. 62.
    Duckworth DC, Marcus RK (1989) Radio frequency powered glow discharge atomization/ionization source for solids mass spectrometry. Anal Chem 61(17):1879–1886CrossRefGoogle Scholar
  63. 63.
    Bengtson A, Nelis T (2006) The concept of constant emission yield in GDOES. Anal Bioanal Chem 385(3):568–585PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Jochum KP, Seufert HM, Thirlwall MF (1990) High-sensitivity Nb analysis by spark-source mass spectrometry (SSMS) and calibration of XRF Nb and Zr. Chem Geol 81(1–2):1–16CrossRefGoogle Scholar
  65. 65.
    Hoffmann V, Kasik M, Robinson PK, Venzago C (2005) Glow discharge mass spectrometry. Anal Bioanal Chem 381(1):173–188PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Betti M (2005) Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS). Int J Mass Spectrom 242(2–3):169–182CrossRefGoogle Scholar
  67. 67.
    Sodhi RN (2004) Time-of-flight secondary ion mass spectrometry (TOF-SIMS): versatility in chemical and imaging surface analysis. Analyst 129(6):483–487PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    McPhail DS (2006) Applications of secondary ion mass spectrometry (SIMS) in materials science. J Mater Sci 41(3):873–903CrossRefGoogle Scholar
  69. 69.
    Russo RE, Mao X, Liu H, Gonzalez J, Mao SS (2002) Laser ablation in analytical chemistry—a review. Talanta 57(3):425–451PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F (2015) Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 407(22):6593–6617PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Longerich HP, Günther D, Jackson SE (1996) Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius’ J Anal Chem 355(5–6):538–542Google Scholar
  72. 72.
    Koch J, Günther D (2007) Femtosecond laser ablation inductively coupled plasma mass spectrometry: achievements and remaining problems. Anal Bioanal Chem 387(1):149–153PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Günther D, Heinrich CA (1999) Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J Anal Atom Spectrom 14(9):1369–1374CrossRefGoogle Scholar
  74. 74.
    Vogt C, Latkoczy C (2009) Laser Ablation ICP-MS. In: Inductively coupled plasma mass spectrometry handbook. Wiley, New York, pp 228–258CrossRefGoogle Scholar
  75. 75.
    Pan Z, Gu H, Talaty N, Chen H, Shanaiah N, Hainline BE, Raftery D (2007) Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Anal Bioanal Chem 387(2):539–549PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Internat Edit 45(43):7188–7192CrossRefGoogle Scholar
  77. 77.
    Suni NM, Aalto H, Kauppila TJ, Kotiaho T, Kostiainen R (2012) Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J Mass Spectrom 47(5):611–619PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wiseman JM, Evans CA, Bowen CL, Kennedy JH (2010) Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst 135(4):720–725PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    GrahamáCooks R (2011) Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst 136(15):3066–3068CrossRefGoogle Scholar
  80. 80.
    Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. In: McLafferty FW (ed) Proceedings of the National Academy of SciencesGoogle Scholar
  81. 81.
    Bodzon-Kulakowska A, Antolak A, Drabik A, Marszalek-Grabska M, Kotlińska J, Suder P (2017) Brain lipidomic changes after morphine, cocaine and amphetamine administration—DESI—MS imaging study. BBA-Mol Cell Biol Lipids 7:686–691CrossRefGoogle Scholar
  82. 82.
    Zhao M, Zhang S, Yang C, Xu Y, Wen Y, Sun L, Zhang X (2008) Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J Forensic Sci 53(4):807–811PubMedCrossRefGoogle Scholar
  83. 83.
    Eberlin LS, Haddad R, Neto RCS, Cosso RG, Maia DR, Maldaner AO, Ifa DR (2010) Instantaneous chemical profiles of banknotes by ambient mass spectrometry. Analyst 135(10):2533–2539PubMedCrossRefGoogle Scholar
  84. 84.
    Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int 226(1–3):10–21PubMedCrossRefGoogle Scholar
  85. 85.
    Hemalatha RG, Pradeep T (2013) Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI MS) imaging. J Agric Food Chem 61(31):7477–7487PubMedCrossRefGoogle Scholar
  86. 86.
    Li M, Chen H, Yang X, Chen J, Li C (2009) Direct quantification of organic acids in aerosols by desorption electrospray ionization mass spectrometry. Atmos Environ 43(17):2717–2720CrossRefGoogle Scholar
  87. 87.
    Hagan NA, Cornish TJ, Pilato RS, Van Houten KA, Antoine MD, Lippa TP, Demirev PA (2008) Detection and identification of immobilized low-volatility organophosphates by desorption ionization mass spectrometry. Int J Mass Spectrom 278(2–3):158–165CrossRefGoogle Scholar
  88. 88.
    Betti M, Giannarelli S, Hiernaut T, Rasmussen G, Koch L (1996) Detection of trace radioisotopes in soil, sediment and vegetation by glow discharge mass spectrometry. Fresenius’ J Anal Chem 355(5–6):642–646Google Scholar
  89. 89.
    Barshick CM, Barshick SA, Mohill ML, Britt PF, Smith DH (1996) Elemental and organometallic analyses of soil using glow discharge mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 10(3):341–346CrossRefGoogle Scholar
  90. 90.
    Matschat R, Hinrichs J, Kipphardt H (2006) Application of glow discharge mass spectrometry to multielement ultra-trace determination in ultrahigh-purity copper and iron: a calibration approach achieving quantification and traceability. Anal Bioanal Chem 386(1):125–141PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Jecklin MC, Gamez G, Zenobi R (2009) Fast polymer fingerprinting using flowing afterglow atmospheric pressure glow discharge mass spectrometry. Analyst 134(8):1629–1636PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24(21):3635–3653PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Hallett K, Thickett D, McPhail DS, Chater RJ (2003) Application of SIMS to silver tarnish at the British Museum. Appl Surf Sci 203:789–792CrossRefGoogle Scholar
  94. 94.
    Brunelle A, Touboul D, Laprévote O (2005) Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. J Mass Spectrom 40(8):985–999PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Touboul D, Brunelle A, Halgand F, De La Porte S, Laprévote O (2005) Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J Lipid Res 46(7):1388–1395PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Cucina A, Dudgeon J, Neff H (2007) Methodological strategy for the analysis of human dental enamel by LA-ICP-MS. J Archeol Sci 34(11):1884–1888CrossRefGoogle Scholar
  97. 97.
    Byrne S, Amarasiriwardena D, Bandak B, Bartkus L, Kane J, Jones J, Cornejo L (2010) Were Chinchorros exposed to arsenic? Arsenic determination in Chinchorro mummies’ hair by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchem J 94(1):28–35CrossRefGoogle Scholar
  98. 98.
    Becker JS, Matusch A, Palm C, Salber D, Morton KA, Becker JS (2010) Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics 2(2):104–111PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J (2014) Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 406(27):6963–6977PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Busman M, Bobell JR, Maragos CM (2015) Determination of the aflatoxin M1 (AFM1) from milk by direct analysis in real time–mass spectrometry (DART-MS). Food Control 47:592–598CrossRefGoogle Scholar
  101. 101.
    Cajka T, Danhelova H, Zachariasova M, Riddellova K, Hajslova J (2013) Application of direct analysis in real time ionization–mass spectrometry (DART–MS) in chicken meat metabolomics aiming at the retrospective control of feed fraud. Metabolomics 9(3):545–557CrossRefGoogle Scholar
  102. 102.
    Crawford E, Musselman B (2012) Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer. Anal Bioanal Chem 403(10):2807–2812PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Chan MN, Nah T, Wilson KR (2013) Real time in situ chemical characterization of sub-micron organic aerosols using Direct Analysis in Real Time mass spectrometry (DART-MS): the effect of aerosol size and volatility. Analyst 138(13):3749–3757PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Zhou S, Forbes MW, Abbatt JP (2015) Application of direct analysis in real time-mass spectrometry (DART-MS) to the study of gas-surface heterogeneous reactions: focus on ozone and PAHs. Anal Chem 87(9):4733–4740PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Buchberger WW (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218(4):603–618PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rowell F, Seviour J, Lim AY, Elumbaring-Salazar CG, Loke J, Ma J (2012) Detection of nitro-organic and peroxide explosives in latent fingermarks by DART-and SALDI-TOF-mass spectrometry. Forensic Sci Int 221(1–3):84–91PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Steiner RR, Larson RL (2009) Validation of the direct analysis in real time source for use in forensic drug screening. J Forensic Sci 54(3):617–622PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Mess A, Enthaler B, Fischer M, Rapp C, Pruns JK, Vietzke JP (2013) A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS. Talanta 103:398–402PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Park HM, Kim HJ, Jang YP, Ki SY (2013) Direct analysis in real time mass spectrometry (DART-MS) analysis of skin metabolome changes in the ultraviolet B-induced mice. Biomol Ther 21(6):470CrossRefGoogle Scholar
  110. 110.
    Turner C, Španěl P, Smith D (2006) A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas 7(4):321CrossRefGoogle Scholar
  111. 111.
    Španěl P, Smith D, Holland TA, Singary WA, Elder JB (1999) Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 13(14):1354–1359PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Allardyce RA, Hill AL, Murdoch DR (2006) The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn Microbiol Infect Dis 55(4):255–261PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Dryahina K, Smith D, Španěl P (2010) Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 24(9):1296–1304PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Spanĕl P, Wang T, Smith D (2004) Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 18(16):1869–1873PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Francis GJ, Wilson PF, Milligan DB, Langford VS, McEwan MJ (2007) GeoVOC: a SIFT-MS method for the analysis of small linear hydrocarbons of relevance to oil exploration. Int J Mass Spectrom 268(1):38–46CrossRefGoogle Scholar
  116. 116.
    Smith D, Cheng P, Spanel P (2002) Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom 16(11):1124–1134PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Cotte-Rodríguez I, Handberg E, Noll R, Kilgour DP, Cooks RG (2005) Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS). Analyst 130(5):679–686PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Bauer S, Solyom D (1994) Determination of volatile organic compounds at the parts per trillion level in complex aqueous matrixes using membrane introduction mass spectrometry. Anal Chem 66(24):4422–4431CrossRefGoogle Scholar
  119. 119.
    Conrath U, Amoroso G, Köhle H, Sültemeyer DF (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J 38(6):1015–1022PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Lauritsen FR, Gylling S (1995) Online monitoring of biological reactions at low parts-per-trillion levels by membrane inlet mass spectrometry. Anal Chem 67(8):1418–1420CrossRefGoogle Scholar
  121. 121.
    Alberici RM, Zampronio CG, Poppi RJ, Eberlin MN (2002) Water solubilization of ethanol and BTEX from gasoline: on-line monitoring by membrane introduction mass spectrometry. Analyst 127(2):230–234CrossRefGoogle Scholar
  122. 122.
    Manicke NE, Bills BJ, Zhang C (2016) Analysis of biofluids by paper spray MS: advances and challenges. Bioanalysis 8(6):589–606PubMedCrossRefGoogle Scholar
  123. 123.
    Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, Ouyang Z (2011) Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem 83(4):1197–1201PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhang Z, Cooks RG, Ouyang Z (2012) Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs. Analyst 137(11):2556–2558PubMedCrossRefGoogle Scholar
  125. 125.
    Mazzotti F, Di Donna L, Taverna D, Nardi M, Aiello D, Napoli A, Sindona G (2013) Evaluation of dialdehydic anti-inflammatory active principles in extra-virgin olive oil by reactive paper spray mass spectrometry. Int J Mass Spectrom 352:87–91CrossRefGoogle Scholar
  126. 126.
    Deng J, Yang Y (2013) Chemical fingerprint analysis for quality assessment and control of Bansha herbal tea using paper spray mass spectrometry. Anal Chim Acta 785:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM, Shirai T, Blake DR (2004) Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. J Geophys Res Atmos 109(D2)Google Scholar
  128. 128.
    Boscaini E, Van Ruth S, Biasioli F, Gasperi F, Märk TD, Märk M (2003) Gas Chromatography–Olfactometry (GC-O) and Proton Transfer Reaction–Mass Spectrometry (PTR-MS) Analysis of the Flavor Profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino Cheeses. J Agric Food Chem 51(7):1782–1790PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Buhr K, Van Ruth S, Delahunty C (2002) Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. Int J Mass Spectrom 221(1):1–7CrossRefGoogle Scholar
  130. 130.
    Boscaini E, Mikoviny T, Wisthaler A, von Hartungen E, Märk TD (2004) Characterization of wine with PTR-MS. Int J Mass Spectrom 239(2–3):215–219CrossRefGoogle Scholar
  131. 131.
    Mazel V, Richardin P (2009) ToF-SIMS study of organic materials in cultural heritage: identification and chemical imaging. Wiley, p 433Google Scholar
  132. 132.
    LaHaye NL, Harilal SS, Diwakar PK, Hassanein A (2014) Characterization of laser ablation sample introduction plasma plumes in fs-LA-ICP-MS. J Anal At Spectrom 29(12):2267–2274CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Renata Marcinkowska
    • 1
    Email author
  • Klaudia Pytel
    • 1
  • Bożena Zabiegała
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland

Personalised recommendations