Teaching Green Analytical Chemistry on the Example of Bioindication and Biomonitoring (B & B) Technologies

  • Bernd MarkertEmail author
  • Eun-Shik Kim
  • Stefan Fränzle
  • Simone Wünschmann
  • Meie Wang
  • Rumy Djingova
  • Mira Aničić Urošević
  • Shirong Liu
  • John Hillman
  • Jean-Bernard Diatta
  • Susanta Lahiri
  • Ivan Suchara
  • Piotr Szefer
  • Guntis Tabors
  • Jörg Rinklebe
  • Stefano Loppi
  • Harry Harmens
  • Peter Hooda
  • Maria Wacławek
  • Filipe Tack
  • Svetlana Gorelova
  • Anna Knox
  • Józef Pacyna
  • Elias Baydoun
  • Marina Frontasyeva
  • Adnan Badran
  • Alexander Lux
  • Silvia De Marco
  • Erik Meers
  • Andrzej Kłos
  • Jerome Nriagu
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Teaching of Green Analytical Chemistry (GAC) requires a not inconsiderable willingness on the part of the lecturer to familiarize himself with a relatively new field in analytical chemistry. Although there is much that can be derived from Green and Sustainable Chemistry, the GAC’s forward-looking perspectives in particular are independent approaches that must not be neglected. In the first chapter of this article, approaches are pursued “how (teachers) learn to learn,” ultimately based on a consensus on ethics, which allows dealing with people, society and the environment to become an interdisciplinary unit. The end of all this is a smart method of conflict management which provides solutions of problems. Available tools include
  • Regions concerned with education (learn how to learn)

  • Think tanks (to define integrative solutions for problems) and

  • Turbodemogracy (to get faster results)

In the second part of the chapter, GAC and nature merge completely, in which mechanical sample collectors are replaced by mosses within the framework of bioindication and biomonitoring (B & B) technologies during atmospheric deposition measurement of chemical elements. Definitions of bioindicators and biomonitors, active and passive B & B technologies and interdisciplinary connections between bioindicative sampling and scientific interpretations of natural systems are given. Mosses are distinguished by a rather large resistance toward enhanced levels of various anthropogenic air pollutions permitting their use also in polluted areas.


Green analytical chemistry Education Bioindication/biomonitoring Atmospheric pollution 



A lot of international colleagues have supported us during decades of years through the field of information transfer by communication, scientific support and promotion of ideas. We would like to mention only some as Martin Broadley (Nottingham, UK), Alan Covich (Athens, USA), John Grace (Edinburgh, UK), Gene Turner (Louisiana, USA), Charlotte Poschenrieder (Barcelona, Spain), Stefan Trapp (Kongens Lyngby, Denmark) for supporting this manuscript.


  1. 1.
    Anastas P, Kirchhoff M (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694CrossRefGoogle Scholar
  2. 2.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301CrossRefGoogle Scholar
  3. 3.
    Androas J, Dicks A (2012) Green chemistry teaching n higher education: a review of effective practices? Chem Educ Res Pract 13:69–79CrossRefGoogle Scholar
  4. 4.
    Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27(6):497–511CrossRefGoogle Scholar
  5. 5.
    Galuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal Chem V 50:78–84CrossRefGoogle Scholar
  6. 6.
    Gron L (2009) Green analytical chemistry: application and education. American Chemical SocietyGoogle Scholar
  7. 7.
    Guardia M, Garrigues S (eds) (2012) Handbook of green analytical chemistry. WileyGoogle Scholar
  8. 8.
    Koel M, Kaljurand M (2010) Green analytical chemistry. RSC PublishingGoogle Scholar
  9. 9.
    Koel M (2016) Do we need green analytical chemistry? Royal Soc Chem 18:923–931Google Scholar
  10. 10.
    Lahiri S (2018) Alternatives of synthetic chemicals-chemicals driven from foods and related materials. Acta Agraria Debreceniensis 150, University of Debrecen, Hungary, p 291Google Scholar
  11. 11.
    Lahiri S, Choudhury D, Sen K (2018) Radio-green chemistry and nature resourced radiochemistry. J Radioanal Nucl Chem 318:1543–1558CrossRefGoogle Scholar
  12. 12.
    Płotka-Wasylka J, Kurowska-Susdorf A, Sajid M, de la Guardia M, Namieśnik J, Tobiszewski M (2018) Green chemistry in higher education: state of the art, challenges and future trends. Chemsuschem 11:2845–2858. Scholar
  13. 13.
    Plotka-Wasylka J, Fabjanowicz M, Namieśnik J (2019) History and milestones of green analytical chemistry. In: Namieśnik J, Plotka-Wasylka J (eds) Green analytical chemistry—past, present and perspectives. Springer, Heidelberg, in preparationGoogle Scholar
  14. 14.
    Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8:1063CrossRefGoogle Scholar
  15. 15.
    BMBF, Bundesministerium für Bildung und Forschung (2001) Bundesprogramm “Lernende Regionen—Förderung von Netzwerken”, BonnGoogle Scholar
  16. 16.
    Haber W (2009) Nachhaltige Entwicklung unter human-ökologischen Perspektiven im globalen Wandel. Erste Hans Carl von Carlowitz-Vorlesung des Rats für Nachhaltige Entwicklung anlässlich seiner 9. Jahreskonferenz am 23. November 2009 in BerlinGoogle Scholar
  17. 17.
    Menke-Glückert P (1968) Working paper‚ eco-commandments for world citizens’ presented at UNESCO conference‚ Man and Biosphere, March 9 in 1968, ParisGoogle Scholar
  18. 18.
    Zhu YG, Jones KC (2010) Urbanisation and health in China. Lancet 376:232–233CrossRefGoogle Scholar
  19. 19.
    Dahrendorf R (1986) Pfade aus Utopia. Arbeiten zur Theorie und Methode der Soziologie. Piper, MunichGoogle Scholar
  20. 20.
    Dahrendorf R (2003) Auf der Suche nach einer neuen Ordnung/Vorlesungen zur Politik der Freiheit im 21. Jahrhundert, Beck, MünchenGoogle Scholar
  21. 21.
    Goeudevert D (2000) Mit Träumen beginnt die Realität. Aus dem Leben eines Europäers, Rowohlt, ReinbekGoogle Scholar
  22. 22.
    Hosang M, Fränzle S, Markert B (2005) Die emotionale matrix—Grundlagen für gesellschaftlichen Wandel und nachhaltige Innovation. Oekom Verlag, MünchenGoogle Scholar
  23. 23.
    Miegel M (2003) Die deformierte Gesellschaft/Wie die Deutschen die Wirklichkeit verdrängen. Ullstein, BerlinGoogle Scholar
  24. 24.
    Miegel M (2005) Epochenwende. Gewinnt der Westen die Zukunft? Propyläen Verlag, BerlinGoogle Scholar
  25. 25.
    Rosnay DE (2000) Homo symbionticus: Einblicke in das 3. Jahrtausend, Gerling, Akademie Verlag, MünchenGoogle Scholar
  26. 26.
    Choe J (2002) A new ethics for the brave new world. In: Choe J, Lieth H (eds) Plenary lectures at the 8th international congress of ecology “ecology in a changing world. Seoul University Press, Seoul, pp 91–94Google Scholar
  27. 27.
    Rühling A, Tyler G (1968) An ecological approach to the lead problem. Bot Not 121:321–342Google Scholar
  28. 28.
    Aničić Urošević M, Vuković G, Tomašević M (2017) Biomonitoring of air pollution using mosses and lichens, A passive and active approach, state of the art research and perspectives. Nova Science Publishers, New York, USA. ISBN: 978–1-53610-212-3Google Scholar
  29. 29.
    Harmens H, G Mills, Hayes F, Sharps K, Frontasyeva M, and the participants of the ICP Vegetation (2016) Air pollution and vegetation: ICP vegetation annual report 2015/2016Google Scholar
  30. 30.
    Klos A, Rajfur M, Waclawek M, Waclawek W, Wuenschmann S, Markert B (2010) Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health 4(2/3):98–119CrossRefGoogle Scholar
  31. 31.
    Loppi S, Giomarelli N, Bargagli R (1999) Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, central Italy). Cryptogam, Mycol 20:119–126CrossRefGoogle Scholar
  32. 32.
    Markert B, Oehlmann J, Roth M (1997) Biomonitoring von Schwermetallen – eine kritische Bestandsaufnahme. Z Ökologie u Naturschutz 6:1–8Google Scholar
  33. 33.
    Markert B, Wünschmann S, Marcovecchio J, De Marco S (2013) Bioindicadores y Biomonitores: Definiciones, Estrategias y Aplicaciones. In: Marcovecchio J, Freije R (eds) Procesos Químicos en EstuariosGoogle Scholar
  34. 34.
    Seaward MRD (2006) Biomonitors of environmental pollution: an appraisal of their effectiveness. Ecol Chem Eng 13(3–4):193–199Google Scholar
  35. 35.
    Smodis B, Pignata ML, Saiki M, Cortes E, Bangfa N, Markert B, Nyarko B, Arunchalan J, Garty J, Vutchkov M, Wolterbeek HT, Steiness E, Freitas NC, Lucaciu A, Frontasyeva (2004) Validation and application of plants as biomonitors of trace athmospheric pollution—a co-ordinated effort in 14 countries. J Atmos Chem 49:3–13CrossRefGoogle Scholar
  36. 36.
    Tabors G, Lapina L (2012) Growth dynamics of the hylocomium splendens moss. In: Nriagu J, Pacyna J, Szefer P, Markert B, Wünschmann S, Namieśnik J (eds) Heavy metals in the environment. Maralte Publisher, Leiden, pp 311–321Google Scholar
  37. 37.
    Wang M, Chen W, Markert B (2010) Effects of soil quality on fates of chlorimuron-ethyl in agricultural soils. Agrochimica LIV-N4:245–256Google Scholar
  38. 38.
    Wang M, Markert B, Shen W, Chen W, Peng C, Ouyang Z (2011) Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ Sci Pollut Res 18:958–967CrossRefGoogle Scholar
  39. 39.
    Wolterbeek B, Sarmento S, Verburg T (2010) Is there a future for biomonitoring of element air pollution? A review focused on a larger-scaled health-related (epidemiological) context. J Radioanal Nucl Chem. Scholar
  40. 40.
    Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21(S1):77–82CrossRefGoogle Scholar
  41. 41.
    Adriano DC (ed) (1992) Biogeochemistry of trace metals. Lewis, Boca RatonGoogle Scholar
  42. 42.
    Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  43. 43.
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:86–126Google Scholar
  44. 44.
    Fränzle S (2010) Chemical elements in plant and soil: parameters controlling essentiality. Task for Vegetation Sciences 45. Springer Heidelberg, 196 ppGoogle Scholar
  45. 45.
    Hooda P (ed) (2010) Trace elements in soil. Wiley, New YorkGoogle Scholar
  46. 46.
    Lee JA, Tallis JH (1973) Regional and historical aspects of lead pollution in Britain. Nature 245:216–218CrossRefGoogle Scholar
  47. 47.
    Lieth H, Markert B (eds) (1990) Element concentration cadasters in ecosystems. Methods of assessment and evaluation VCH WeinheimGoogle Scholar
  48. 48.
    Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545CrossRefGoogle Scholar
  49. 49.
    Markert B, Weckert V (1994) Higher lead concentrations in the environment of former West Germany after fall of the “Berlin Wall”. Sci Total Environ 158:93–96CrossRefGoogle Scholar
  50. 50.
    Markert B, Fränzle S, Wünschmann S (2015) Chemical evolution & the biological system of the elements. Springer, HeidelbergGoogle Scholar
  51. 51.
    Markert B, Wünschmann S, Rinklebe J, Fränzle S, Ammari T (2018) The biological system of the chemical elements (BSCE)—the role of lithium for mental health care. Bioact Compd Health Dis 1(1):1–15CrossRefGoogle Scholar
  52. 52.
    Martinka M, Vaculík M, Lux A (2014) Plant cell responses to cadmium and zinc. In: Nick P, Opatrný Z (eds) Applied plant cell biology: cellular tools and approaches for plant biotechnology. Plant Cell Monographs 22. Springer, pp 209–246Google Scholar
  53. 53.
    Pacyna J, Pacyna E (eds) (2017) Environmental determinants of human health. Springer International PublishingGoogle Scholar
  54. 54.
    Rinklebe J, Du Laing G (2011) Factors controlling the dynamics of trace metals in frequently flooded soils. In: Magdi Selim H (ed) Dynamics and bioavailability of heavy metals in the root zone. CRC Press. Taylor & Francis Group, pp 245–270Google Scholar
  55. 55.
    Streit B, Stumm W (1993) Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In: Markert B (ed) Plants as biomonitors—indicators for heavy metals in the terrestrial environment. VCH WeinheimGoogle Scholar
  56. 56.
    Fränzle O (2003) Bioindicators and environmental stress assessment. In: Markert B, Breure T, Zechmeister H (eds) Bioindicators and biomonitors. Elsevier, pp 41–84Google Scholar
  57. 57.
    Wünschmann S, Oehlmann J, Delakowitz B, Markert B (2001) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 1. UWSF-Z Umweltchem Ökotox 13(5):259–265Google Scholar
  58. 58.
    Wünschmann S, Oehlmann J, Delakowitz B, Markert B (2002) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, Teil 2. UWSF-Z Umweltchem Ökotox 14(2):96–103CrossRefGoogle Scholar
  59. 59.
    Wünschmann S, Fränzle S, Markert B (2004) Transfer von Elementen in die Muttermilch. Methoden, Modellierungen, Empfehlungen. Ecomed-Medizin Verlagsgesellschaft/Springer, LandsbergGoogle Scholar
  60. 60.
    Wünschmann S, Fränzle S, Markert B, Zechmeister H (2008) Input and transfer of trace metals from food via mothermilk to the child—an international study in Middle Europe. In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications. Wiley, pp 555–592Google Scholar
  61. 61.
    Djingova R, Kuleff I (2000) Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace elements, their distribution and effects in the environment. Elsevier, Amsterdam, pp 137–185CrossRefGoogle Scholar
  62. 62.
    Markert B (1996) Instrumental element and multielement analysis of plant samples—methods and applications. Wiley, Chichester, New York, TokyoGoogle Scholar
  63. 63.
    Kramer KJM (2006) Quality of data in environmental analysis. Geo-Eco-Marina 11(2005):15–19Google Scholar
  64. 64.
    Namiesnik J, Szefer P (eds) (2009) Analytical measurements in aquatic environments. CRC Press, Boca RatonGoogle Scholar
  65. 65.
    Quevauviller P, Maier E (1999) Certified reference material in interlaboratory studies for environmental analysis—the BCR approach. Elsevier, Amsterdam, p 558Google Scholar
  66. 66.
    Quevauviller P, Balabanis P, Fragakis C, Weydert M, Oliver M, Kaschl A, Arnold G, Kroll A, Galbiati L, Zaldivar JM, Bidoglio G (2005) Science-policy integration needs in support of the implementation of the EU water framework directive. Environ Sci Policy 203–211CrossRefGoogle Scholar
  67. 67.
    Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses. Toxicol Environ Chem 40:43–56CrossRefGoogle Scholar
  68. 68.
    Berg T, Røyset O, Steinnes E (1995) Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos Environ 29(3):353–360CrossRefGoogle Scholar
  69. 69.
    Wappelhorst O (1999) Charakterisierung atmosphärischer Depositionen in der Euroregion Neiße durch ein terrestrisches Biomonitoring. Dissertation, Internationales Hochschulinstitut Zittau, 189 ppGoogle Scholar
  70. 70.
    Wappelhorst O, Kühn I, Oehlmann J, Markert B (2000) Deposition and disease: a moss monitoring project as an approach to ascertaining potential connections. Sci Total Environ 249:243–256CrossRefGoogle Scholar
  71. 71.
    Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464CrossRefGoogle Scholar
  72. 72.
    Markert B (2003) Was kostet ein Pfund Ehrlichkeit? In: Markert B, Konschak R (eds) Mögliche Wege zu einem gesellschaftsfähigen Ethik - Konsens – Was können Hochschulen leisten? Peter Lang Verlag, Frankfurt/Main, pp 167–197Google Scholar
  73. 73.
    Herpin U, Berlekamp J, Markert B, Wolterbeek B, Grodzinska K, Siewers U, Lieth H, Weckert V (1996) The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring. Sci Total Environ 187:185–198CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bernd Markert
    • 1
    Email author
  • Eun-Shik Kim
    • 2
  • Stefan Fränzle
    • 3
  • Simone Wünschmann
    • 1
  • Meie Wang
    • 4
  • Rumy Djingova
    • 5
  • Mira Aničić Urošević
    • 6
  • Shirong Liu
    • 7
  • John Hillman
    • 8
  • Jean-Bernard Diatta
    • 9
  • Susanta Lahiri
    • 10
  • Ivan Suchara
    • 11
  • Piotr Szefer
    • 12
  • Guntis Tabors
    • 13
  • Jörg Rinklebe
    • 14
  • Stefano Loppi
    • 15
  • Harry Harmens
    • 16
  • Peter Hooda
    • 17
  • Maria Wacławek
    • 18
  • Filipe Tack
    • 19
  • Svetlana Gorelova
    • 20
  • Anna Knox
    • 21
  • Józef Pacyna
    • 22
  • Elias Baydoun
    • 23
  • Marina Frontasyeva
    • 24
  • Adnan Badran
    • 25
  • Alexander Lux
    • 26
  • Silvia De Marco
    • 27
  • Erik Meers
    • 28
  • Andrzej Kłos
    • 29
  • Jerome Nriagu
    • 30
  1. 1.Environmental Institute of Scientific NetworksHaren-ErikaGermany
  2. 2.Department of Forestry Environment and Systems, College of Forest ScienceKookmin UniversitySeoulSouth Korea
  3. 3.Department of Biological and Environmental SciencesUniversity of DresdenZittauGermany
  4. 4.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  5. 5.Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  6. 6.Institute of Physics Belgrade, University of BelgradeBelgradeSerbia
  7. 7.Department of Forest Ecology and HydrologyChinese Academy of ForestryBeijingPeople’s Republic of China
  8. 8.James Hutton InstituteInvergowrieUK
  9. 9.Department of Agricultural Chemistry and Environmental BiogeochemistryPoznan University of Life SciencesPoznańPoland
  10. 10.Department of Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  11. 11.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPrůhoniceCzech Republic
  12. 12.Department of Food SciencesMedical University of GdanskGdanskPoland
  13. 13.Faculty of BiologyUniversity of LatviaRigaLatvia
  14. 14.Department of Soil- and Groundwater-ManagementUniversity of WuppertalWuppertalGermany
  15. 15.Department of Life SciencesUniversity of SienaSienaItaly
  16. 16.Centre for Ecology and HydrologyEnvironment Centre WalesBangorUK
  17. 17.School of Geography, Geology and the EnvironmentKingston University LondonLondonUK
  18. 18.Department of Biotechnology and Molecular BiologyOpole UniversityOpolePoland
  19. 19.Department of Applied Analytical and Physical ChemistryGhent UniversityGhentBelgium
  20. 20.Department of BiologyNatural Science Institute, Tula State UniversityTulaRussia
  21. 21.Department of Environmental Science and BiotechnologySavannah River National LaboratoryAikenUSA
  22. 22.Department of Energy and FuelsAGH University of Science and TechnologyKrakowPoland
  23. 23.Department of BiologyAmerican University of BeirutBeirutLebanon
  24. 24.Department of Neutron Activation AnalysisJoint Institute for Nuclear ResearchDubnaRussia
  25. 25.Arab Academy of SciencesBeirutLebanon
  26. 26.Department of Plant PhysiologyComenius University BratislavaBratislavaSlovakia
  27. 27.Department for Biology, Faculty of Exact and Natural SciencesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  28. 28.Department of Green Chemistry and TechnologyUniversity of GhentGhentBelgium
  29. 29.Chair of Biotechnology and Molecular BiologyOpole UniversityOpolePoland
  30. 30.School of Public HealthCenter for Human Growth and Development, University of MichiganAnn ArborUSA

Personalised recommendations