Comparative Greenness Evaluation

  • Marta BystrzanowskaEmail author
  • Aleksander Orłowski
  • Marek Tobiszewski
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Greenness of analytical procedure is multivariable aspect as many greenness criteria should be taken into consideration. On the other hand, modern analytical chemistry offers dozens of analytical procedures, based on different sample preparation and final determination techniques that are used for the determination of a given analyte in a given matrix. For such complex decision-making processes, multi-criteria decision analysis tools are applied as a systematic approach to deal with complex decisions. Multi-criteria decision analysis can be treated as green analytical chemistry comparative metric tool if criteria of assessment describe procedures greenness. In this contribution, we present the results of ranking of seven analytical procedures that are used for the determination of benzo[a]pyrene in smoked food products. The results of TOPSIS, AHP, PROMETHEE application indicate that the first rank is scored by microwave-assisted extraction followed by high-performance liquid chromatography with spectrofluorometric detection, indicating this procedure as the greenest alternative. The contribution describes a step-by-step approach to the application of three multi-criteria decision analysis tools as green analytical chemistry metrics systems.


Greenness assessment Analytical procedure assessment MCDA, Multi-criteria decision analysis TOPSIS, AHP, PROMETHEE 


  1. 1.
    Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure and Appl Chem 78(11):1993–2002CrossRefGoogle Scholar
  2. 2.
    Keith LH, Gron LU, Young JL (2007) Green analytical methodologies. Chemical Rev 107(6):2695–2708CrossRefGoogle Scholar
  3. 3.
    Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72CrossRefGoogle Scholar
  4. 4.
    Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2:3PubMedPubMedCentralGoogle Scholar
  5. 5.
    Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta 181:204–209CrossRefGoogle Scholar
  6. 6.
    Tobiszewski M, Tsakovski S, Simeonov V, Namieśnik J (2013) Application of multivariate statistics in assessment of green analytical chemistry parameters of analytical methodologies. Green Chem 15(6):1615–1623CrossRefGoogle Scholar
  7. 7.
    Bystrzanowska M, Tobiszewski M (2018) How can analysts use multicriteria decision analysis?. TrAC Trends in Anal Chem 105:98–105CrossRefGoogle Scholar
  8. 8.
    Lahdelma R, Salminen P, Hokkanen J (2000) Using multicriteria methods in environmental planning and management. Environ Manag 26(6):595–605CrossRefGoogle Scholar
  9. 9.
    Mardani A, Jusoh A, MD Nor K, Khalifah Z, Zakwan N, Valipour A (2015) Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ Res (Ekonomska Istraživanja) 28(1):16–571CrossRefGoogle Scholar
  10. 10.
    Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409:3578–3594CrossRefGoogle Scholar
  11. 11.
    Smilde AK, Knevelman A, Coenegracht PMJ (1986) Introduction of multi-criteria decision making to optimization procedures for high-performance liquid chromatographic separations. J Chromatogr 369:1–10CrossRefGoogle Scholar
  12. 12.
    Smilde AK, Bruins CHP, Doornbos DA (1987) Optimization of the reversed-phase high-performance liquid chromatographic separation of synthetic estrogenic and progestogenic steroids using the multi-criteria decision making method. J Chromatogr 410:1–12CrossRefGoogle Scholar
  13. 13.
    Eagan P, Weinberg L (1999) Application of analytic hierarchy process techniques to streamlined life-cycle analysis of two anodizing processes. Environ Sci Technol 33(9):1495–1500CrossRefGoogle Scholar
  14. 14.
    Khan FI, Sadiq R (2005) Risk-based prioritization of air pollution monitoring using fuzzy synthetic evaluation technique. Environ Monit Assess 105(1–3):261–283CrossRefGoogle Scholar
  15. 15.
    Li C, Zhang X, Zhang S, Suzuki K (2009) Environmentally conscious design of chemical processes and products: multi-optimization method. Chem Eng Res Des 87(2):233–243CrossRefGoogle Scholar
  16. 16.
    Perez-Vega S, Salmeron-Ochoa I, Nieva-de la Hidalga A, Sharratt PN (2011) Analytical hierarchy processes (AHP) for the selection of solvents in early stages of pharmaceutical process development. Process Saf Environ Prot 89(4):261–267CrossRefGoogle Scholar
  17. 17.
    Tobiszewski M, Tsakovski S, Simeonov V, Namieśnik J, Pena-Pereira F (2015) A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem 17(10):4773–4785CrossRefGoogle Scholar
  18. 18.
    Tobiszewski M, Orłowski A (2015) Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water. J Chromatogr A 1387:116–122CrossRefGoogle Scholar
  19. 19.
    Bigus P, Namieśnik J, Tobiszewski M (2016) Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid–liquid microextraction. J Chromatogr A 1446:21–26CrossRefGoogle Scholar
  20. 20.
    Serna J, Martinez END, Rincón PCN, Camargo M, Gálvez D (2016) Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages. Chem Eng Res Des 113:28–49CrossRefGoogle Scholar
  21. 21.
    Jędrkiewicz R, Orłowski A, Namieśnik J, Tobiszewski M (2016) Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs? Talanta 147:282–288CrossRefGoogle Scholar
  22. 22.
    Tobiszewski M, Pena-Pereira F, Orłowski A, Namieśnik J (2016) A standard analytical method as the common good and pollution abatement measure. TrAC Trends Anal Chem 80:321–327CrossRefGoogle Scholar
  23. 23.
    Nikouei MA, Oroujzadeh M, Mehdipour-Ataei S (2017) The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly (ether ketone) s and poly (ether sulfone) s for proton exchange membrane fuel cell. Energy 119:77–85CrossRefGoogle Scholar
  24. 24.
    Tobiszewski M, Namieśnik J, Pena-Pereira F (2017) Aderivatisation agent selection guide. Green Chem 19(24):5911–5922CrossRefGoogle Scholar
  25. 25.
    Hicks AL (2017) Using multi criteria decision analysis to evaluate nanotechnology: nAg enabled textiles as a case study. Environ Sci: Nano 4(8):1647–1655Google Scholar
  26. 26.
    Xu D, Lv L, Ren J, Shen W, Wei SA, Dong L (2017) Life cycle sustainability assessment of chemical processes: a vector-based three-dimensional algorithm coupled with AHP. Ind Eng Chem Res 56(39):11216–11227CrossRefGoogle Scholar
  27. 27.
    Gadge PA, Waghmare AC (2017) A topsis-based Taguchi optimization to determine the reverse osmosis process parameter for distillery effluent in ZLD. IJARIIT 3(1):521–529Google Scholar
  28. 28.
    Cinelli M, Coles SR, Nadagouda MN, Błaszczyński J, Słowiński R, Varma RS, Kirwan K (2017) Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes. J Clean Prod 162:938–948CrossRefGoogle Scholar
  29. 29.
    Chalabi Z, Milojevic A, Doherty R M, Stevenson DS, MacKenzie IA, Milner J, …, Wilkinson P (2017) Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos Environ 167:466–475CrossRefGoogle Scholar
  30. 30.
    Jędrkiewicz R, Tsakovski S, Lavenu A, Namieśnik J, Tobiszewski M (2018) Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food. Talanta 178:928–933CrossRefGoogle Scholar
  31. 31.
    Kadziński M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2018) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res 264(2):472–490CrossRefGoogle Scholar
  32. 32.
    Bigus P, Namieśnik J, Tobiszewski M (2018) Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction optimization for chlorophenols determination. J Chromatogr A 1553:25–31CrossRefGoogle Scholar
  33. 33.
    Hongoh V, Hoen AG, Aenishaenslin C, Waaub JP, Bélanger D, Michel P (2011) Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. Int J Health Geographics 10(1):70CrossRefGoogle Scholar
  34. 34.
    Hwang CL, Yoon KP (1981) Multiple attribute decision making: methods and applications. Springer-Verlag, New YorkCrossRefGoogle Scholar
  35. 35.
    Yoon K (1987) A reconciliation among discrete compromise solutions. J Oper Res Soc 38(3):277–286CrossRefGoogle Scholar
  36. 36.
    Hwang CL, Lai YJ, Liu TY (1993) A new approach for multiple objective decision making. Comput Oper Res 20(8):889–899CrossRefGoogle Scholar
  37. 37.
    Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371CrossRefGoogle Scholar
  39. 39.
    Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26CrossRefGoogle Scholar
  40. 40.
    Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83–98Google Scholar
  41. 41.
    Saaty TL (2010) Principia mathematica decerndi: mathematical principles of decision making. Generalization of the analytic network process to neutral firing and synthesis, Pittsburgh, 2010Google Scholar
  42. 42.
    Saaty TL (2000) Fundamentals of decision making and priority theory with analytic hierarchy process, PittsburghGoogle Scholar
  43. 43.
    Lin ZC, Yang CB (1996) Evaluation of machine selection by the AHP method. J Mater Process Technol 57:253–258CrossRefGoogle Scholar
  44. 44.
    Saaty TL (1980) The analytic hierarchy process: planning, priority setting and resource allocation. McGraw-Hill, New YorkGoogle Scholar
  45. 45.
    Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psycho 15:234–281CrossRefGoogle Scholar
  46. 46.
    Erdoğmuş Ş, Kapanoglu M, Koc E (2005) Evaluating high-tech alternatives by using analytic network process with BOCR and multiactors. Eval Program Plann 28(4):391–399CrossRefGoogle Scholar
  47. 47.
    Brans JP, Vincke P (1985) Note—a preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Management Sci 31(6):647–656CrossRefGoogle Scholar
  48. 48.
    Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371CrossRefGoogle Scholar
  49. 49.
    Betrie GD, Sadiq R, Morin KA, Tesfamariam S (2013) Selection of remedialalternatives for mine sites: a multicriteria decision analysis approach. J Envi-ron Manage 119:36–46CrossRefGoogle Scholar
  50. 50.
    European Food Safety Authority (EFSA) (2008) Polycyclic aromatic hydrocarbons in food‐scientific opinion of the panel on contaminants in the food chain. EFSA J 6(8):724Google Scholar
  51. 51.
    Sander LC, Wise SA (1997) NIST special publication 922: polycyclic aromatic structure index. Natl Inst Stand TechnolGoogle Scholar
  52. 52.
    International Agency for Research on Cancer (ed) (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1–42: this publication represents the views and expert opinions of an IARC Ad-hoc working group on the evaluation of carcinogenic risks to humans, witch met in Lyon, 10–18 March 1987. International Agency for Research on CancerGoogle Scholar
  53. 53.
    IARC (2010) Monographs on the evaluation of carcinogenic risks to humans, vol 92. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  54. 54.
    Barranco A, Alonso-Salces RM, Bakkali A, Berrueta LA, Gallo B, Vicente F, Sarobe M (2003) Solid-phase clean-up in the liquid chromatographic determination of polycyclic aromatic hydrocarbons in edible oils. J Chromatogr A 988(1):33–40CrossRefGoogle Scholar
  55. 55.
    Dissanayake A, Galloway T S (2004) Evaluation of fixed wavelength fluorescence and synchronous fluorescence spectrophotometry as a biomonitoring tool of environmental contamination. Mar Environ Res 58(2–5):281–285CrossRefGoogle Scholar
  56. 56.
    Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mut Res/Genet Toxicol Environ Mutagen 443(1):139–147CrossRefGoogle Scholar
  57. 57.
    European Commission, Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in food (expressed on 4 December 2002) Document SCF/CS/CNTM/PAH/29 Final, 2002. Available from: 〈
  58. 58.
    Stołyhwo A, Sikorski ZE (2005) Polycyclic aromatic hydrocarbons in smoked fish—a critical review. Food Chem 91(2):303–311CrossRefGoogle Scholar
  59. 59.
    European Commission (2006) Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official J Eur Union, L 364/5Google Scholar
  60. 60.
    Commission Regulation (EC) (2005) No. 208/2005 amending regulation (EC) No. 466/2001 as regards polycyclic aromatic hydrocarbons, 4 Feb 2005Google Scholar
  61. 61.
    Commision EC (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. 2006R1881-EN-01.09. 2014-014.001-1Google Scholar
  62. 62.
    Pissinatti R, de Souza S V (2017) HC-0A-02: Analysis of polycyclic aromatic hydrocarbons from food. In Biodegradation and bioconversion of hydrocarbons (pp 67–104). Springer, SingaporeGoogle Scholar
  63. 63.
    Duedahl-Olesen L, Christensen JH, Højgård A, Granby K, Timm-Heinrich M (2010) Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish. Food Addit Contam 27(9):1294–1305CrossRefGoogle Scholar
  64. 64.
    Yurchenko S, Mölder U (2005) The determination of polycyclic aromatic hydrocarbons in smoked fish by gas chromatography mass spectrometry with positive-ion chemical ionization. J Food Compos Anal 18(8):857–869CrossRefGoogle Scholar
  65. 65.
    Visciano P, Perugini M, Amorena M, Ianieri A (2006) Polycyclic aromatic hydrocarbons in fresh and cold-smoked Atlantic salmon fillets. J Food Prot 69(5):1134–1138CrossRefGoogle Scholar
  66. 66.
    Olatunji OS, Fatoki OS, Opeolu BO, Ximba BJ (2014) Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography—Flame ionization detector. Food Chem 156:296–300CrossRefGoogle Scholar
  67. 67.
    Purcaro G, Moret S, Conte LS (2009) Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Sci 81(1):275–280CrossRefGoogle Scholar
  68. 68.
    Ghasemzadeh-Mohammadi V, Mohammadi A, Hashemi M, Khaksar R, Haratian P (2012) Microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. J Chromatogr A 1237:30–36CrossRefGoogle Scholar
  69. 69.
    Essumang DK, Dodoo DK, Adjei JK (2012) Polycyclic aromatic hydrocarbon (PAH) contamination in smoke-cured fish products. J Food Compos Anal 27(2):128–138CrossRefGoogle Scholar
  70. 70.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    Tobiszewski M, Namieśnik J (2015) Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards. Ecotoxicol Environ Saf 120:169–173CrossRefGoogle Scholar
  72. 72.
    Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marta Bystrzanowska
    • 1
    Email author
  • Aleksander Orłowski
    • 2
  • Marek Tobiszewski
    • 1
  1. 1.Department of Analytical Chemistry, Chemical FacultyGdańsk University of Technology (GUT)GdańskPoland
  2. 2.Department of Management, Faculty of Management and EconomicsGdańsk University of Technology (GUT)GdańskPoland

Personalised recommendations