Skip to main content

Comparative Greenness Evaluation

  • Chapter
  • First Online:
Green Analytical Chemistry

Abstract

Greenness of analytical procedure is multivariable aspect as many greenness criteria should be taken into consideration. On the other hand, modern analytical chemistry offers dozens of analytical procedures, based on different sample preparation and final determination techniques that are used for the determination of a given analyte in a given matrix. For such complex decision-making processes, multi-criteria decision analysis tools are applied as a systematic approach to deal with complex decisions. Multi-criteria decision analysis can be treated as green analytical chemistry comparative metric tool if criteria of assessment describe procedures greenness. In this contribution, we present the results of ranking of seven analytical procedures that are used for the determination of benzo[a]pyrene in smoked food products. The results of TOPSIS, AHP, PROMETHEE application indicate that the first rank is scored by microwave-assisted extraction followed by high-performance liquid chromatography with spectrofluorometric detection, indicating this procedure as the greenest alternative. The contribution describes a step-by-step approach to the application of three multi-criteria decision analysis tools as green analytical chemistry metrics systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure and Appl Chem 78(11):1993–2002

    Article  CAS  Google Scholar 

  2. Keith LH, Gron LU, Young JL (2007) Green analytical methodologies. Chemical Rev 107(6):2695–2708

    Article  CAS  Google Scholar 

  3. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem 37:61–72

    Article  Google Scholar 

  4. Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2:3

    PubMed  PubMed Central  Google Scholar 

  5. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta 181:204–209

    Article  Google Scholar 

  6. Tobiszewski M, Tsakovski S, Simeonov V, Namieśnik J (2013) Application of multivariate statistics in assessment of green analytical chemistry parameters of analytical methodologies. Green Chem 15(6):1615–1623

    Article  CAS  Google Scholar 

  7. Bystrzanowska M, Tobiszewski M (2018) How can analysts use multicriteria decision analysis?. TrAC Trends in Anal Chem 105:98–105

    Article  CAS  Google Scholar 

  8. Lahdelma R, Salminen P, Hokkanen J (2000) Using multicriteria methods in environmental planning and management. Environ Manag 26(6):595–605

    Article  CAS  Google Scholar 

  9. Mardani A, Jusoh A, MD Nor K, Khalifah Z, Zakwan N, Valipour A (2015) Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ Res (Ekonomska Istraživanja) 28(1):16–571

    Article  Google Scholar 

  10. Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409:3578–3594

    Article  CAS  Google Scholar 

  11. Smilde AK, Knevelman A, Coenegracht PMJ (1986) Introduction of multi-criteria decision making to optimization procedures for high-performance liquid chromatographic separations. J Chromatogr 369:1–10

    Article  CAS  Google Scholar 

  12. Smilde AK, Bruins CHP, Doornbos DA (1987) Optimization of the reversed-phase high-performance liquid chromatographic separation of synthetic estrogenic and progestogenic steroids using the multi-criteria decision making method. J Chromatogr 410:1–12

    Article  CAS  Google Scholar 

  13. Eagan P, Weinberg L (1999) Application of analytic hierarchy process techniques to streamlined life-cycle analysis of two anodizing processes. Environ Sci Technol 33(9):1495–1500

    Article  CAS  Google Scholar 

  14. Khan FI, Sadiq R (2005) Risk-based prioritization of air pollution monitoring using fuzzy synthetic evaluation technique. Environ Monit Assess 105(1–3):261–283

    Article  CAS  Google Scholar 

  15. Li C, Zhang X, Zhang S, Suzuki K (2009) Environmentally conscious design of chemical processes and products: multi-optimization method. Chem Eng Res Des 87(2):233–243

    Article  CAS  Google Scholar 

  16. Perez-Vega S, Salmeron-Ochoa I, Nieva-de la Hidalga A, Sharratt PN (2011) Analytical hierarchy processes (AHP) for the selection of solvents in early stages of pharmaceutical process development. Process Saf Environ Prot 89(4):261–267

    Article  CAS  Google Scholar 

  17. Tobiszewski M, Tsakovski S, Simeonov V, Namieśnik J, Pena-Pereira F (2015) A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem 17(10):4773–4785

    Article  CAS  Google Scholar 

  18. Tobiszewski M, Orłowski A (2015) Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water. J Chromatogr A 1387:116–122

    Article  CAS  Google Scholar 

  19. Bigus P, Namieśnik J, Tobiszewski M (2016) Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid–liquid microextraction. J Chromatogr A 1446:21–26

    Article  CAS  Google Scholar 

  20. Serna J, Martinez END, Rincón PCN, Camargo M, Gálvez D (2016) Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages. Chem Eng Res Des 113:28–49

    Article  CAS  Google Scholar 

  21. Jędrkiewicz R, Orłowski A, Namieśnik J, Tobiszewski M (2016) Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs? Talanta 147:282–288

    Article  Google Scholar 

  22. Tobiszewski M, Pena-Pereira F, Orłowski A, Namieśnik J (2016) A standard analytical method as the common good and pollution abatement measure. TrAC Trends Anal Chem 80:321–327

    Article  CAS  Google Scholar 

  23. Nikouei MA, Oroujzadeh M, Mehdipour-Ataei S (2017) The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly (ether ketone) s and poly (ether sulfone) s for proton exchange membrane fuel cell. Energy 119:77–85

    Article  CAS  Google Scholar 

  24. Tobiszewski M, Namieśnik J, Pena-Pereira F (2017) Aderivatisation agent selection guide. Green Chem 19(24):5911–5922

    Article  CAS  Google Scholar 

  25. Hicks AL (2017) Using multi criteria decision analysis to evaluate nanotechnology: nAg enabled textiles as a case study. Environ Sci: Nano 4(8):1647–1655

    CAS  Google Scholar 

  26. Xu D, Lv L, Ren J, Shen W, Wei SA, Dong L (2017) Life cycle sustainability assessment of chemical processes: a vector-based three-dimensional algorithm coupled with AHP. Ind Eng Chem Res 56(39):11216–11227

    Article  CAS  Google Scholar 

  27. Gadge PA, Waghmare AC (2017) A topsis-based Taguchi optimization to determine the reverse osmosis process parameter for distillery effluent in ZLD. IJARIIT 3(1):521–529

    Google Scholar 

  28. Cinelli M, Coles SR, Nadagouda MN, Błaszczyński J, Słowiński R, Varma RS, Kirwan K (2017) Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes. J Clean Prod 162:938–948

    Article  CAS  Google Scholar 

  29. Chalabi Z, Milojevic A, Doherty R M, Stevenson DS, MacKenzie IA, Milner J, …, Wilkinson P (2017) Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies. Atmos Environ 167:466–475

    Article  CAS  Google Scholar 

  30. Jędrkiewicz R, Tsakovski S, Lavenu A, Namieśnik J, Tobiszewski M (2018) Simultaneous grouping and ranking with combination of SOM and TOPSIS for selection of preferable analytical procedure for furan determination in food. Talanta 178:928–933

    Article  Google Scholar 

  31. Kadziński M, Cinelli M, Ciomek K, Coles SR, Nadagouda MN, Varma RS, Kirwan K (2018) Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. Eur J Oper Res 264(2):472–490

    Article  Google Scholar 

  32. Bigus P, Namieśnik J, Tobiszewski M (2018) Implementation of multicriteria decision analysis in design of experiment for dispersive liquid-liquid microextraction optimization for chlorophenols determination. J Chromatogr A 1553:25–31

    Article  CAS  Google Scholar 

  33. Hongoh V, Hoen AG, Aenishaenslin C, Waaub JP, Bélanger D, Michel P (2011) Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. Int J Health Geographics 10(1):70

    Article  Google Scholar 

  34. Hwang CL, Yoon KP (1981) Multiple attribute decision making: methods and applications. Springer-Verlag, New York

    Book  Google Scholar 

  35. Yoon K (1987) A reconciliation among discrete compromise solutions. J Oper Res Soc 38(3):277–286

    Article  Google Scholar 

  36. Hwang CL, Lai YJ, Liu TY (1993) A new approach for multiple objective decision making. Comput Oper Res 20(8):889–899

    Article  Google Scholar 

  37. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    Google Scholar 

  38. Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371

    Article  Google Scholar 

  39. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26

    Article  Google Scholar 

  40. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83–98

    Google Scholar 

  41. Saaty TL (2010) Principia mathematica decerndi: mathematical principles of decision making. Generalization of the analytic network process to neutral firing and synthesis, Pittsburgh, 2010

    Google Scholar 

  42. Saaty TL (2000) Fundamentals of decision making and priority theory with analytic hierarchy process, Pittsburgh

    Google Scholar 

  43. Lin ZC, Yang CB (1996) Evaluation of machine selection by the AHP method. J Mater Process Technol 57:253–258

    Article  Google Scholar 

  44. Saaty TL (1980) The analytic hierarchy process: planning, priority setting and resource allocation. McGraw-Hill, New York

    Google Scholar 

  45. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psycho 15:234–281

    Article  Google Scholar 

  46. Erdoğmuş Ş, Kapanoglu M, Koc E (2005) Evaluating high-tech alternatives by using analytic network process with BOCR and multiactors. Eval Program Plann 28(4):391–399

    Article  Google Scholar 

  47. Brans JP, Vincke P (1985) Note—a preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Management Sci 31(6):647–656

    Article  Google Scholar 

  48. Herva M, Roca E (2013) Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J Clean Prod 39:355–371

    Article  Google Scholar 

  49. Betrie GD, Sadiq R, Morin KA, Tesfamariam S (2013) Selection of remedialalternatives for mine sites: a multicriteria decision analysis approach. J Envi-ron Manage 119:36–46

    Article  Google Scholar 

  50. European Food Safety Authority (EFSA) (2008) Polycyclic aromatic hydrocarbons in food‐scientific opinion of the panel on contaminants in the food chain. EFSA J 6(8):724

    Google Scholar 

  51. Sander LC, Wise SA (1997) NIST special publication 922: polycyclic aromatic structure index. Natl Inst Stand Technol

    Google Scholar 

  52. International Agency for Research on Cancer (ed) (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1–42: this publication represents the views and expert opinions of an IARC Ad-hoc working group on the evaluation of carcinogenic risks to humans, witch met in Lyon, 10–18 March 1987. International Agency for Research on Cancer

    Google Scholar 

  53. IARC (2010) Monographs on the evaluation of carcinogenic risks to humans, vol 92. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  54. Barranco A, Alonso-Salces RM, Bakkali A, Berrueta LA, Gallo B, Vicente F, Sarobe M (2003) Solid-phase clean-up in the liquid chromatographic determination of polycyclic aromatic hydrocarbons in edible oils. J Chromatogr A 988(1):33–40

    Article  CAS  Google Scholar 

  55. Dissanayake A, Galloway T S (2004) Evaluation of fixed wavelength fluorescence and synchronous fluorescence spectrophotometry as a biomonitoring tool of environmental contamination. Mar Environ Res 58(2–5):281–285

    Article  CAS  Google Scholar 

  56. Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mut Res/Genet Toxicol Environ Mutagen 443(1):139–147

    Article  CAS  Google Scholar 

  57. European Commission, Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in food (expressed on 4 December 2002) Document SCF/CS/CNTM/PAH/29 Final, 2002. Available from: 〈http://europa.eu.int/comm/food/fs/sc/scf/index_en.html

  58. Stołyhwo A, Sikorski ZE (2005) Polycyclic aromatic hydrocarbons in smoked fish—a critical review. Food Chem 91(2):303–311

    Article  Google Scholar 

  59. European Commission (2006) Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official J Eur Union, L 364/5

    Google Scholar 

  60. Commission Regulation (EC) (2005) No. 208/2005 amending regulation (EC) No. 466/2001 as regards polycyclic aromatic hydrocarbons, 4 Feb 2005

    Google Scholar 

  61. Commision EC (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. 2006R1881-EN-01.09. 2014-014.001-1

    Google Scholar 

  62. Pissinatti R, de Souza S V (2017) HC-0A-02: Analysis of polycyclic aromatic hydrocarbons from food. In Biodegradation and bioconversion of hydrocarbons (pp 67–104). Springer, Singapore

    Google Scholar 

  63. Duedahl-Olesen L, Christensen JH, Højgård A, Granby K, Timm-Heinrich M (2010) Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish. Food Addit Contam 27(9):1294–1305

    Article  CAS  Google Scholar 

  64. Yurchenko S, Mölder U (2005) The determination of polycyclic aromatic hydrocarbons in smoked fish by gas chromatography mass spectrometry with positive-ion chemical ionization. J Food Compos Anal 18(8):857–869

    Article  CAS  Google Scholar 

  65. Visciano P, Perugini M, Amorena M, Ianieri A (2006) Polycyclic aromatic hydrocarbons in fresh and cold-smoked Atlantic salmon fillets. J Food Prot 69(5):1134–1138

    Article  CAS  Google Scholar 

  66. Olatunji OS, Fatoki OS, Opeolu BO, Ximba BJ (2014) Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography—Flame ionization detector. Food Chem 156:296–300

    Article  CAS  Google Scholar 

  67. Purcaro G, Moret S, Conte LS (2009) Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Sci 81(1):275–280

    Article  CAS  Google Scholar 

  68. Ghasemzadeh-Mohammadi V, Mohammadi A, Hashemi M, Khaksar R, Haratian P (2012) Microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish. J Chromatogr A 1237:30–36

    Article  CAS  Google Scholar 

  69. Essumang DK, Dodoo DK, Adjei JK (2012) Polycyclic aromatic hydrocarbon (PAH) contamination in smoke-cured fish products. J Food Compos Anal 27(2):128–138

    Article  CAS  Google Scholar 

  70. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  71. Tobiszewski M, Namieśnik J (2015) Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards. Ecotoxicol Environ Saf 120:169–173

    Article  CAS  Google Scholar 

  72. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bystrzanowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bystrzanowska, M., Orłowski, A., Tobiszewski, M. (2019). Comparative Greenness Evaluation. In: Płotka-Wasylka, J., Namieśnik, J. (eds) Green Analytical Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9105-7_12

Download citation

Publish with us

Policies and ethics