Advertisement

Remote Monitoring of Environmental Pollutants

  • Jacek GębickiEmail author
  • Bartosz Szulczyński
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Atmospheric air quality is one of the key factors influencing human health. Air quality evaluation is not an easy task as the atmosphere is a complex system subjected to continuous changes in time. Observed progress in the development of measurement devices and technologies is fundamental for acquisition of more reliable information about condition and quality of atmospheric air. Unfortunately, this process leads to an increase in the monitoring and air quality evaluation cost, which limits their widespread application. Accordingly, there is a search for new, cheap, alternative methods of information acquisition about air quality in the field of both new chemical sensors and sensor matrices. The technologies are developed, which allow monitoring of hardly accessible and dangerous for human placed where air pollution occurred. Moreover, the paper presents and discusses current measurement tools utilized for atmospheric air quality evaluation. The development trends connected with atmospheric air monitoring were also presented.

Keywords

Air monitoring LIDAR Drones Analyser Chemical sensors Electronic nose 

References

  1. 1.
    Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719CrossRefGoogle Scholar
  2. 2.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367CrossRefGoogle Scholar
  3. 3.
    WHO (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide, Global update 2005, Summary of risk assessmentGoogle Scholar
  4. 4.
    Righi E, Aggazzotti G, Fantuzzi G, Ciccarese V, Predieri G (2002) Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci Total Environ 286:41–50CrossRefGoogle Scholar
  5. 5.
    Ilgen E, Karfich N, Levsen K, Angerer J, Schneider P, Heinrich J, Wichmann HE, Dunemann L, Begerow J (2001) Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos Environ 35:1235–1252CrossRefGoogle Scholar
  6. 6.
    Taylor SM, Sider D, Hampson C, Taylor SJ, Wilson K, Walter SD, Eyles JD (2008) Community health effects of a petroleum refinery. Ecosyst Health 3:27–43CrossRefGoogle Scholar
  7. 7.
    Kot-Wasik A, Zabiegała B, Urbanowicz M, Dominiak E, Wasik A, Namieśnik J (2007) Advances in passive sampling in environmental studies. Anal Chim Acta 602:141–163CrossRefGoogle Scholar
  8. 8.
    Partyka M, Zabiegała B, Namieśnik J, Przyjazny A (2007) Application of passive samplers in monitoring of organic constituents of air. Crit Rev Anal Chem 37:51–77CrossRefGoogle Scholar
  9. 9.
    Sturges K, Nicell JA (2009) Assessment and regulation of odour impacts. Atmos Environ 43:196–206CrossRefGoogle Scholar
  10. 10.
    Rani B, Singh U, Chuhan AK, Sharma D, Maheshwari R (2011) Photochemical smog pollution and its mitigation measures. J Adv Sci Res 2(4):28–33 28Google Scholar
  11. 11.
    Air quality in Europe—2012 report, EEA Report, No. 4/2012Google Scholar
  12. 12.
    Air quality in Europe—2013 report, EEA Report, No. 9/2013Google Scholar
  13. 13.
    Banakh VA, Falits AV (2018) Amplification of a coherent lidar echo signal in a turbulent atmosphere. J Quant Spectrosc RA 219:248–254CrossRefGoogle Scholar
  14. 14.
    Joyce MJ, Erb JD, Sampson BA, Moen RA (2019) Detection of coarse woody debris using airborne light detection and ranging (LiDAR). Forest Ecol Manag 433:678–689CrossRefGoogle Scholar
  15. 15.
    Li X, Guo L, Shen M (2019) Inverse synthetic aperture lidar imaging of indoor real data. Optik 181:28–35CrossRefGoogle Scholar
  16. 16.
    Harry M, Zhang H, Lemckert Ch, Colleter G, Blenkinsopp Ch (2018) Observation of surf zone wave transformation using LiDAR. Appl Ocean Res 78:88–98CrossRefGoogle Scholar
  17. 17.
    Villa TF, Salimi F, Morton K, Morawska L, Gonzalez F (2016) Development and validation of a UAV based system for air pollution measurements. Sensors 16(12):2202CrossRefGoogle Scholar
  18. 18.
    Ishida H, Nakamoto T, Moriizumi T (1998) Remote sensing of gas/odor source location and concentration distribution using mobile system. Sens Actuators B Chem 49:52–57CrossRefGoogle Scholar
  19. 19.
    Velasco A, Ferrero R, Gandino F, Montrucchio B, Rebaudengo M (2016) A mobile and low-cost system for environmental monitoring: a casy study. Sensors 16(5):710CrossRefGoogle Scholar
  20. 20.
    Villa TF, Gonzalez F, Miljievic B, Ristovski D, Morawska L (2016) An overview of small unmanned aerial vehicles for air quality measurements: present applications and future prospectives. Sensors 16(7):1072CrossRefGoogle Scholar
  21. 21.
    Alvarado M, Gonzalez F, Erskine P, Cliff D, Heuff D (2017) A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle. Sensors 17(2):343CrossRefGoogle Scholar
  22. 22.
    Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai M, Schiller JH (2013) Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv Robot 27:725–738CrossRefGoogle Scholar
  23. 23.
    EN 14211 Standard chemiluminescence method of nitrogen monoxide and dioxide concentration measurement, 2012Google Scholar
  24. 24.
    EN 14212 Standard fluorescence UV method of sulphur dioxide concentration measurement (2012)Google Scholar
  25. 25.
    EN 14625 Standard method for ozone concentration measurement using UV photometry (2012)Google Scholar
  26. 26.
    EN 14626 Standard method for carbon monoxide concentration measurement using non-dispersive infrared spectroscopy (2012)Google Scholar
  27. 27.
    EN 12341 Standard gravimetric method for measurement of mass concentration of the fractions PM10 or PM2,5 suspended dust (1998)Google Scholar
  28. 28.
    Spinelle L, Gerboles M, Kok G, Persijn S, Sauerwald T (2017) Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17(7):1520CrossRefGoogle Scholar
  29. 29.
    Gębicki J, Dymerski T (2016) Application of chemical sensors and sensor matrixes to air quality evaluation. In de la Guardia M, Armenta S (eds) The quality of air, vol 73, 1st edn. Elsevier, Amsterdam, The Netherlands, pp 267–294Google Scholar
  30. 30.
    Szulczyński B, Gębicki J (2017) Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 4:21CrossRefGoogle Scholar
  31. 31.
    Chao Y, Yao S, Buttner WJ, Stetter JR (2005) Amperometric sensor for selective and stable hydrogen measurement. Sens Actuators B Chem 106:784–790CrossRefGoogle Scholar
  32. 32.
    Buzzeo MC, Hardacre C, Compton RG (2004) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76:4583–4588CrossRefGoogle Scholar
  33. 33.
    Gębicki J, Chachulski B (2009) Influence of analyte flow rate on signal and response time of the amperometric gas sensor with Nafion membrane. Electroanalysis 21:1568–1576CrossRefGoogle Scholar
  34. 34.
    Stetter JR, Li J (2008) Amperometric gas sensors—a review. Chem Rev 108:352–366CrossRefGoogle Scholar
  35. 35.
    Gębicki J, Kloskowski A, Chrzanowski W, Stepnowski P, Namieśnik J (2016) Application of ionic liquids in amperometric gas sensors. Crit Rev Anal Chem 46:122–138CrossRefGoogle Scholar
  36. 36.
    Sakai G, Baik NS, Miura N, Yamazoe N (2001) Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: dependence of CO and H2 response on film thickness. Sens Actuator B Chem 77:116–121CrossRefGoogle Scholar
  37. 37.
    Chang JF, Kuo HH, Leu IC, Hon MH (2002) The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens Actuator B Chem 84:258–264CrossRefGoogle Scholar
  38. 38.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63–75CrossRefGoogle Scholar
  39. 39.
    Schmidt W, Barsan N, Weimar U (2003) Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements. Sens Actuators B Chem 89:232–236CrossRefGoogle Scholar
  40. 40.
    Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10:3882–3910CrossRefGoogle Scholar
  41. 41.
    Stetter JR, Penrose WR (2002) Understanding chemical sensors and chemical sensor arrays (Electronic Noses): past, present, and future. Sens Update 10(1):189–229CrossRefGoogle Scholar
  42. 42.
    Wilson AD (2012) Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technol 1:453–463CrossRefGoogle Scholar
  43. 43.
    Boeker P (2014) On “Electronic Nose” methodology. Sens Actuator B Chem 204:2–17CrossRefGoogle Scholar
  44. 44.
    Rosenkranz HS, Cunningham AR (2003) Environmental odors and health hazards. Sci Total Environ 313:15–24CrossRefGoogle Scholar
  45. 45.
    Lazarova V, Abed B, Markovska G, Dezenclos T, Amara A (2013) Control of odour nuisance in urban areas: the efficiency and social acceptance of the application of masking agents. Water Sci Technol 68:614–621CrossRefGoogle Scholar
  46. 46.
    Nicell JA (2009) Assessment and regulation of odour impacts. Atmos Environ 43:196–206CrossRefGoogle Scholar
  47. 47.
    Naddeo V, Zarra T, Giuliani S, Belgiorno V (2012) Odour impact assessment in industrial areas. Chem Eng Trans 30:85–90Google Scholar
  48. 48.
    Capelli L, Sironi S, Del Rosso R, Bianchi G, Davoli E (2012) Olfactory and toxic impact of industrial odour emissions. Water Sci Technol 66:1399–1406CrossRefGoogle Scholar
  49. 49.
    Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108:705–725CrossRefGoogle Scholar
  50. 50.
    Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24:181–198CrossRefGoogle Scholar
  51. 51.
    Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148CrossRefGoogle Scholar
  52. 52.
    Dentoni L, Capelli L, Sironi S, Rosso R, Zanetti S, Della Torre M (2012) Development of an electronic nose for environmental odour monitoring. Sensors 12:14363–14381CrossRefGoogle Scholar
  53. 53.
    Gębicki J, Dymerski T, Namieśnik J (2014) Monitoring of odour nuisance from landfill using electronic nose. Chem Eng Trans 40:85–90Google Scholar
  54. 54.
    Brudzewski K, Osowski S, Pawłowski W (2012) Metal oxide sensor arrays for detection of explosives at sub-parts-per million concentration levels by the differential electronic nose. Sens Actuators B Chem 161:528–533CrossRefGoogle Scholar
  55. 55.
    Alizadeh T, Zeynali S (2008) Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification. Sens Actuators B Chem 129:412–423CrossRefGoogle Scholar
  56. 56.
    Haddi Z, Amari A, Alami H, El Bari N, Llobet E, Bouchikhi B (2011) A portable electronic nose system for the identification of cannabis-based drugs. Sens Actuators B Chem 155:456–463CrossRefGoogle Scholar
  57. 57.
    Stuetz RM, Fenner RA, Engin G (1999) Characterisation of wastewater using an electronic nose. Water Res 33:442–452CrossRefGoogle Scholar
  58. 58.
    Onkal-Engin G, Demir I, Engin SN (2005) Determination of the relationship between sewage odour and BOD by neural networks. Environ Modell Softw 20:843–850CrossRefGoogle Scholar
  59. 59.
    Deshmukh S, Bandyopadhyay R, Bhattacharyya N, Pandey RA, Jana A (2015) Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—an overview. Talanta 144:329–340CrossRefGoogle Scholar
  60. 60.
    Gardner JW, Shin HW, Hines EL (2000) An electronic nose system to diagnose illness. Sens Actuators B Chem 70:19–24CrossRefGoogle Scholar
  61. 61.
    D’Amico A, Di Natale C, Paolesse R, Macagnano A, Martinelli E, Pennazza G, Santonico M, Bernabei M, Roscioni C, Galluccio G, Bono R, Finazzi Agro E, Rullo S (2008) Olfactory systems for medical applications. Sens Actuators B Chem 130:458–465CrossRefGoogle Scholar
  62. 62.
    D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68:170–176CrossRefGoogle Scholar
  63. 63.
    Dang L, Tian F, Zhang L, Kadri C, Yin X, Peng X, Liu S (2014) A novel classifier ensemble for recognition of multiple indoor air contaminants by an electronic nose. Sens Actuators B Chem 207:67–74CrossRefGoogle Scholar
  64. 64.
    Dymerski T, Gębicki J, Wardencki W, Namieśnik J (2013) Quality evaluation of agricultural distillates using an electronic nose. Sensors 13:15954–15967CrossRefGoogle Scholar
  65. 65.
    Berna AZ, Trowell S, Cynkar W, Cozzolino D (2008) Comparison of metal oxidebased electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage. J Agric Food Chem 56:3238–3244CrossRefGoogle Scholar
  66. 66.
    El Barbri N, Llobet E, El Bari N, Correig X, Bouchikhi B (2008) Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors 8:142–156CrossRefGoogle Scholar
  67. 67.
    Rajamaki T, Arnold M, Venelampi O, Vikman M, Rasanen J, Itavaara M (2005) An electronic nose and indicator volatiles for monitoring of the composting process. Water Air Soil Pollut 1:71–87CrossRefGoogle Scholar
  68. 68.
    Rosi PE, Miscoria SA, Bernik DL, Negri RM (2012) Customized design of electronic noses placed on top of air-lift bioreactors for in situ monitoring the off-gas patterns. Bioprocess Biosyst Eng 35:835–842CrossRefGoogle Scholar
  69. 69.
    Micone PG, Guy C (2007) Odour quantification by a sensor array: an application to landfill gas odours from two different municipal waste treatment works. Sens Actuator B Chem 120:628–637CrossRefGoogle Scholar
  70. 70.
    Capelli S, Sironi P, Centola R, del Rosso R, Il Grande M (2008) Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: focus on training methods. Sens Actuator B Chem 131:53–62CrossRefGoogle Scholar
  71. 71.
    Romain AC, Delva J, Nicolas J (2008) Complementary approaches to measure environmental odours emitted by landfill areas. Sens Actuator B Chem 131:18–23CrossRefGoogle Scholar
  72. 72.
    Dewettinck T, van Hege K, Verstraete W (2001) The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater. Water Res 35:2475–2483CrossRefGoogle Scholar
  73. 73.
    Bourgeois W, Stuetz RM (2002) Use of a chemical sensor array for detecting pollutants in domestic wastewater. Water Res 36:4505–4512CrossRefGoogle Scholar
  74. 74.
    Nake A, Dubreuil B, Raynaud C, Talou T (2005) Outdoor in situ monitoring of volatile emissions from wastewater treatment plants with two portable technologies of electronic noses. Sens Actuator B Chem 106:36–39CrossRefGoogle Scholar
  75. 75.
    Littarru P (2007) Environmental odours assessment from waste treatment plants: dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manag 27:302–309CrossRefGoogle Scholar
  76. 76.
    Stuetz RM, Fenner RA, Engin G (1999) Assessment of odours from sewage treatment works by an electronic nose, H2S analysis and olfactometry. Water Res 33:453–461CrossRefGoogle Scholar
  77. 77.
    Capelli L, Sironi S, Del Rosso R, Centola P, Il Grande M (2008) A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos Environ 42:7050–7058CrossRefGoogle Scholar
  78. 78.
    Nicolas J, Cerisier C, Delva J (2012) Potential of a network of electronic noses to assess in real time the odour annoyance in the environment of a compost facility. Chem Eng Trans 30:133–138Google Scholar
  79. 79.
    Gębicki J, Dymerski T, Namieśnik J (2017) Investigation of air quality beside a municipal landfill: the fate of malodour compounds as a model voC. Environments 4(1):7CrossRefGoogle Scholar
  80. 80.
    Pohle R, Weisbrod E, Hedler H (2016) Enhancement of MEMS-based Ga2O3 gas sensors by surface modifications. Procedia Eng 168:211–215CrossRefGoogle Scholar
  81. 81.
    Kilinc N, Cakmak O, Kosemen A, Ermek E, Ozturk S, Yerli Y, Ozturk ZZ, Urey H (2014) Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens Actuator B Chem 202:357–364CrossRefGoogle Scholar
  82. 82.
    Bur C, Bastuck M, Puglisi D, Schütze A, Lloyd Spetz A, Andersson M (2015) Discrimination and quantification of volatile organic compounds in the ppb-range with gas sensitive SiC-FETs using multivariate statistics. Sens Actuator B Chem 514:225–233CrossRefGoogle Scholar
  83. 83.
    Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126–135CrossRefGoogle Scholar
  84. 84.
    Hayes JE, Stevenson RJ, Stuetz RM (2014) The impact of malodour on communities: a review of assessment techniques. Sci Total Environ 500–501:395–407CrossRefGoogle Scholar
  85. 85.
    Guillot J, Milan B (2016) E-noses: actual limitations and perspectives for environmental odour analysis. Chem Eng Trans 54:223–228Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Process Engineering and Chemical Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland

Personalised recommendations