Flow Injection Analysis Toward Green Analytical Chemistry

  • Anita Martinović BevandaEmail author
  • Stanislava Talić
  • Anita Ivanković
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Green analytical chemistry has brought new goals in the development and application of analytical methods. The flow injection methods meet some of these goals: reduction of chemical waste generation, reduction of the use of harmful reagents and solvents, and increase the security of analysts. Simple equipment, great repeatability, controlled dispersion, reproducible signals, and high sample throughput are the basic advantages of flow injection methods of analysis. Development of FIA leads to the well-established concepts: sequential injection analysis (SIA), lab-on-valve (LOV), and also multi-syringe, multi-commuted, and combined flow systems. The recent literature points to the efforts of analysts to develop green analytical methods by adapting classical methods to flow conditions or developing completely new methods based on flow analysis. This chapter will briefly describe flow systems and evolution of these systems with the aim of achieving the goals of green analytical chemistry. Some recent examples of reduction of the use of toxic chemicals, replacement of reagents, and reduction of waste are reviewed.


Green analytical chemistry Flow injection analysis Sequential injection analysis Lab-on-valve Lab-on-chip Multi-commutation Miniaturization 


  1. 1.
    Holden E, Linnerud K, Banister D (2014) Sustainable development: our common future revisited. Global Environ Change 26:130–139CrossRefGoogle Scholar
  2. 2.
    World Commission on Environment and Development (1987) Our common future. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    White MA (2013) Sustainability: I know it when I see it. Ecol Econ 86:213–217CrossRefGoogle Scholar
  4. 4.
    Bettencourt LMA, Kaur J (2011) Evolution and structure of sustainability science. Proc Natl Acad Sci 108:19540–19545CrossRefGoogle Scholar
  5. 5.
    Kates RW, Parris TM, Leiserowitz AA (2005) What is sustainable development? Environment 47:8–21Google Scholar
  6. 6.
    Turner C (2013) Sustainable analytical chemistry-more than just being green. Pure Appl Chem 85:2217–2229CrossRefGoogle Scholar
  7. 7.
    Skeggs LT (1957) An automatic method for colorimetric analysis. Am J Clin Pathol 28:311–322CrossRefGoogle Scholar
  8. 8.
    Ružička J, Hansen EH (1975) Flow injection analyses. Part I. A new concept of fast continuous flow analysis. Anal Chim Acta 78:145–157CrossRefGoogle Scholar
  9. 9.
    Hansen EH, Miró M (2007) How flow-injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses. Trends Anal Chem 26:18–26CrossRefGoogle Scholar
  10. 10.
    Ruzicka J, Marshall GD (1990) Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta 237:329–343CrossRefGoogle Scholar
  11. 11.
    Ruzicka J (2000) Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst 125:1053–1060CrossRefGoogle Scholar
  12. 12.
    Diniz PHGD, de Almeida LF, Harding DP, de Araujo MCU (2012) Flow-batch analysis. Trends Anal Chem 35:39–48CrossRefGoogle Scholar
  13. 13.
    Maya F, Horstkotte B, Estela JM, Cerdà V (2012) Lab in a syringe: fully automated dispersive liquid–liquid microextraction with integrated spectrophotometric detection. Anal Bioanal Chem 404:909–917CrossRefGoogle Scholar
  14. 14.
    Ruzicka J (2018) Redesigning flow injection after 40 years of development: flow programming. Talanta 176:437–443CrossRefGoogle Scholar
  15. 15.
    Krug FJ, Bergamin FH, Zagatto EAG (1986) Commutation in flow injection analysis. Anal Chim Acta 179:103–118CrossRefGoogle Scholar
  16. 16.
    Feres MA, Fortes PR, Zagatto EAG, Santos JLM, Lima JLF (2008) Multi-commutation in flow analysis: recent developments and applications. Anal Chim Acta 618:1–17CrossRefGoogle Scholar
  17. 17.
    Rocha FRP, Reis BF, Zagatto EAG, Lima JLFC, Lapa RAS, Santos JLM (2002) Multicommutation in flow analysis: concepts, applications and trends. Anal Chim Acta 468:119–131CrossRefGoogle Scholar
  18. 18.
    Cerda V, Forteza R, Estela JM (2007) Potential of multisyringe flow-based multicommutated systems. Anal Chim Acta 600:35–45CrossRefGoogle Scholar
  19. 19.
    Cerda V, Ferrer L, Portugal LA, de Souza CT, Ferreira SLC (2018) Multisyringeflow injection analysis in spectroanalytical techniques: a review. Trends Anal Chem 98:1–18CrossRefGoogle Scholar
  20. 20.
    Anastas PT, Kirchiff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694CrossRefGoogle Scholar
  21. 21.
    Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175CrossRefGoogle Scholar
  22. 22.
    Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27:497–511CrossRefGoogle Scholar
  23. 23.
    Grudpan K, Hartwell SK, Wongwilai W, Grudpan S, Lapanantnoppakhun S (2011) Exploiting green analytical procedures for acidity and iron assays employing flow analysis with simple natural reagent extracts. Talanta 84:1396–1400CrossRefGoogle Scholar
  24. 24.
    Supharoek SA, Ponhong K, Siriangkhawut W, Grudpan K (2018) Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample. J Food Drug Anal 26:583–590CrossRefGoogle Scholar
  25. 25.
    Pinyou P, Hartwell SK, Jakmunee J, Lapanantnoppakhun S, Grudpan K (2010) Flow injection determination of iron ions with green tea extracts as a natural chromogenic reagent. Anal Sci 26:619–623CrossRefGoogle Scholar
  26. 26.
    Jaikrajang N, Kruanetr S, Harding DJ, Rattanakit P (2018) A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus emblica Linn. as a natural reagent. Spectrochim Acta A: Mol Biomol Spectrosc 204:726–734CrossRefGoogle Scholar
  27. 27.
    Siriangkhawut W, Khanhuathon Y, Chantiratikul P, Ponhong K, Grudpan K (2016) A green sequential injection spectrophotometric approach using natural reagent extracts from heartwood of Ceasalpinia sappan Linn. for determination of aluminium. Anal Sci 32:329–336CrossRefGoogle Scholar
  28. 28.
    Tontrong S, Khonyoung S, Jakmunee J (2012) Flow injection spectrophotometry using natural reagent from Morinda citrifolia root for determination of aluminium in tea. Food Chem 132:624–629CrossRefGoogle Scholar
  29. 29.
    Ganranooa L, Chokchaisiria R, Grudpan K (2019) Simple simultaneous determination of iron and manganese by sequential injection spectrophotometry using astilbin extracted from Smilax china L. root. Talanta 191:307–312CrossRefGoogle Scholar
  30. 30.
    Palamy S, Ruengsitagoon W (2017) A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline. Spectrochim Acta A: Mol Biomol Spectrosc 171:200–206CrossRefGoogle Scholar
  31. 31.
    Palamy S, Ruengsitagoon W (2018) Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent. Spectrochim Acta A: Mol Biomol Spectrosc 190:129–134CrossRefGoogle Scholar
  32. 32.
    Supharoeka S, Ponhongb K, Grudpan K (2017) A green analytical method for benzoyl peroxide determination by a sequential injection spectrophotometry using natural reagent extracts from pumpkin. Talanta 171:236–241CrossRefGoogle Scholar
  33. 33.
    Lupettia KO, Cruz Vieira I, Fatibello-Filho O (2002) Flow injection spectrophotometric determination of isoproterenol using an avocado (Persea americana) crude extract immobilized on controlled-pore silica reactor. Talanta 57:135–143CrossRefGoogle Scholar
  34. 34.
    Grudpan K, Hartwell SK, Lapanantnoppakhun S, McKelvie I (2010) The case for the use of unrefined natural reagents in analytical chemistry—a green chemical perspective. Anal Methods 2:1651–1661CrossRefGoogle Scholar
  35. 35.
    Borges SS, Frizzarin RM, Reis BF (2006) An automatic flow injection analysis procedure for photometric determination of ethanol in red wine without using a chromogenic reagent. Anal Bioanal Chem 385:197–202CrossRefGoogle Scholar
  36. 36.
    Teerasong S, Chan-Eam S, Sereenonchai K, Amornthammarong N, Ratanawimarnwonge N, Nacapricha D (2010) A reagent-free SIA module for monitoring of sugar, color and dissolved CO2 content in soft drinks. Anal Chim Acta 668:47–53CrossRefGoogle Scholar
  37. 37.
    Passos MLC, Saraiva MMFS, Santos JLM, Reis S, Lúcio M, Lima JLFC (2011) A reagent-free method based on a photo-induced fluorimetry in a sequential injection system. Talanta 84:1309–1313CrossRefGoogle Scholar
  38. 38.
    Siriangkhawuta W, Pencharee S, Grudpan K, Jakmunee J (2009) Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. Talanta 79:1118–1124CrossRefGoogle Scholar
  39. 39.
    Amatatongchaia M, Sroysee W, Chairam S, Nacapricha D (2017) Amperometric flow injection analysis of glucose using immobilized glucose oxidase on nano-composite carbon nanotubes-platinum nanoparticles carbon paste electrode. Talanta 166:420–427CrossRefGoogle Scholar
  40. 40.
    Samphao A, Butmee P, Jitcharoen J, Švorc L, Raber G, Kalcher K (2015) Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe3O4 nanoparticles. Talanta 142:35–42CrossRefGoogle Scholar
  41. 41.
    Santos IC, Mesquita RBR, Rangel AOSS (2015) Screening of cadmium and lead in potentially contaminated waters using a spectrophotometric sequential injection lab-on-valve methodology. Talanta 143:359–365CrossRefGoogle Scholar
  42. 42.
    González A, Mesquita RBR, Avivar J, Moniz T, Rangel M, Cerdà V, Rangel AOSS (2017) Microsequential injection lab-on-valve system for the spectrophotometric bi-parametric determination of iron and copper in natural waters. Talanta 167:703–708CrossRefGoogle Scholar
  43. 43.
    Mesquita RBR, Suarez R, Cerda V, Rangel M, Rangel AOSS (2013) Exploiting the use of 3,4-HPO ligands as nontoxic reagents for the determination of iron in natural waters with a sequential injection approach. Talanta 108:38–45CrossRefGoogle Scholar
  44. 44.
    Miranda JLA, Mesquita RBR, Nunes A, Rangel M, Rangel AOSS (2016) Iron speciation in natural waters by sequential injection analysis with a hexadentate 3-hydroxy-4-pyridinone chelator as chromogenic reagent. Talanta 148:633–640CrossRefGoogle Scholar
  45. 45.
    Bazel Y, Tupys A, Ostapiuk Y, Tymoshuk O, Imricha J, Sandrejova J (2018) A simple non-extractive green method for the spectrophotometric sequential injection determination of copper(II) with novel thiazolylazo dyes. RSC Adv 8:15940–15950CrossRefGoogle Scholar
  46. 46.
    Fan J, Sun Y, Wang J, Fan M (2009) An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater. Anal Chim Acta 640:58–62CrossRefGoogle Scholar
  47. 47.
    Teixeira LSG, Rocha FRP (2007) A green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solid-phase spectrophotometry. Talanta 71:1507–1511CrossRefGoogle Scholar
  48. 48.
    Youngvises N, Suwannasaroj K, Jakmunee J, AlSuhaimi A (2017) Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn(II), Fe(II), Cu(II) and Fe(III) in natural waters. Talanta 166:369–374CrossRefGoogle Scholar
  49. 49.
    Lin K, Ma J, Yuan D, Feng S, Su H, Huang Y, Shangguan Q (2017) Sequential determination of multi-nutrient elements in natural water samples with a reverse flow injection system. Talanta 167:166–171CrossRefGoogle Scholar
  50. 50.
    Ruzicka J (2016) From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies. Talanta 158:299–305CrossRefGoogle Scholar
  51. 51.
    Christopher MH, Measures I, Ruzicka J (2018) Programmable Flow Injection. Principle, methodology and application for trace analysis of iron in a sea water matrix. Talanta 178:698–703CrossRefGoogle Scholar
  52. 52.
    Silva CR, Vieira HJ, Canaes LS, Nobrega JA, Fatibello-Filho O (2005) Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN)2 immobilized in epoxy resin. Talanta 65:965–970CrossRefGoogle Scholar
  53. 53.
    Rocha DL, Rocha FRP (2013) An environmentally friendly flow-based procedure with photo-induced oxidation for the spectrophotometric determination of chloride in urine and waters. Microchem J 108:193–197CrossRefGoogle Scholar
  54. 54.
    Maya F, Estela JM, Cerda V (2008) Spectrophotometric determination of chloride in waters using a multisyringe flow injection system. Talanta 74:1534–1538CrossRefGoogle Scholar
  55. 55.
    Naghshineh M, Larsen J, Olsen K (2016) A green analytical method for rapid determination of pectin degree of esterification using micro sequential injection lab-on-valve system. Food Chem 204:513–520CrossRefGoogle Scholar
  56. 56.
    Emaral S, Masujima T, Zarad W, Kamal M, El-Bagary R (2012) On-line solid-phase enrichment coupled to packed reactor flow injection analysis in a green analytical procedure to determine low levels of folic acid using fluorescence detection. Chem Cent J 6:155–165Google Scholar
  57. 57.
    Prasertboonyai K, Arqueropanyo OA, Liawraungrath B, Liawraungrath S, Pojanakaroon T (2015) Miniaturization of spectrophotometry based on micro flow analysis using norfloxacin as less-toxic reagent for iron determination. Spectrochim Acta A: Mol Biomol Spectrosc 151:532–537CrossRefGoogle Scholar
  58. 58.
    Paluch J, Kozak J, Wieczorek M, Kozak M, Kochana J, Widurek K, Konieczna M, Kościelniak P (2017) Novel approach to two-component speciation analysis. Spectrophotometric flow-based determinations of Fe(II)/Fe(III) and Cr(III)/Cr(VI). Talanta 171:275–282CrossRefGoogle Scholar
  59. 59.
    Šramkova IH, Horstkotte B, Fikarova K, Sklenarova H, Solich P (2018) Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated lab-in-syringe technique. Talanta 184:162–172CrossRefGoogle Scholar
  60. 60.
    Anthemidis AN, Ioannou KIG (2012) Sequential injection ionic liquid dispersive liquid–liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry. Anal Bioanal Chem 404:685–691CrossRefGoogle Scholar
  61. 61.
    Calderilla C, Maya F, Cerdà V, Leal LO (2017) 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta 175:463–469CrossRefGoogle Scholar
  62. 62.
    Silva ARM, Kamogawa MY, Melchert WR (2017) A versatile and greener multicommuted flow-based system for exploiting relatively slow chemical reactions. Microchem J 133:121–125CrossRefGoogle Scholar
  63. 63.
    Melchert WR, Oliveira DR, Rocha FRP (2010) An environmentally friendly flow system for high-sensitivity spectrophotometric determination of free chlorine in natural waters. Microchem J 96:77–81CrossRefGoogle Scholar
  64. 64.
    da Silva Magalhaes T, Reis BF (2018) A novel multicommuted flow analysis strategy for the spectrophotometric determination of cadmium in water at μg L−1 levels without using a preconcentration step. Anal Methods 10:900–909CrossRefGoogle Scholar
  65. 65.
    Abouhiat FZ, Henríquez C, ElYousfi F, Cerdà V (2017) Sensitive kinetic-catalytic spectrophotometric method for cobalt determination using a chip coupled to a multisyringe flow injection analysis system. Talanta 166:405–411CrossRefGoogle Scholar
  66. 66.
    Phansi P, Henrıquez C, Palacio E, Wilairat P, Nacapricha D, Cerda V (2014) An automated catalytic spectrophotometric method for manganese analysis using a chip-multisyringe flow injection system (Chip-MSFIA). Anal Methods 6:5088–5096CrossRefGoogle Scholar
  67. 67.
    Chango G, Palacio E, Cerdà V (2018) Potentiometric chip-based multipumping flow system for the simultaneous determination of fluoride, chloride, pH, and Redox potential in water samples. Talanta 186:554–560CrossRefGoogle Scholar
  68. 68.
    Lima MJA, Reis BF (2017) Fully automated photometric titration procedure employing a multicommuted flow analysis setup for acidity determination in fruit juice, vinegar, and wine. Microchem J 135:207–212CrossRefGoogle Scholar
  69. 69.
    Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL, McNamara S, Martin RS, Spence DM (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–2032CrossRefGoogle Scholar
  70. 70.
    Mattio E, Robert-Peillard F, Vassalo L, Branger C, Margaillan A, Brach-Papa C, Knoery J, Boudenne J, Coulomb B (2018) 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 183:201–208CrossRefGoogle Scholar
  71. 71.
    Horstkotte B, Miro M, Solich S (2018) Where Are modern flow techniques heading to? Anal Bioanal Chem 410:6361–6370CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anita Martinović Bevanda
    • 1
    Email author
  • Stanislava Talić
    • 1
  • Anita Ivanković
    • 2
  1. 1.Department of Chemistry, Faculty of Science and EducationUniversity of MostarMostarBosnia and Herzegovina
  2. 2.Faculty of Agriculture and Food TechnologyUniversity of MostarMostarBosnia and Herzegovina

Personalised recommendations