Skip to main content

DWT Based Time Domain Features on Detection of Epilepsy Seizures from EEG Signal

  • Chapter
  • First Online:
  • 1507 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In the study of detection of an epileptic seizure using Electroencephalogram (EEG), pattern recognition has been recognized as a valued tool. In this pattern recognition study, the first time the authors have attempted to use time domain (TD) features such as waveform length (WL), number of zero-crossings (ZC) and number of slope sign changes (SSC) derived directly from filtered EEG data and from discrete wavelet transform (DWT) of filtered EEG data for the detection of an epileptic seizure. Further, the authors attempted to study the performance of other time domain features such as mean absolute value (MAV), standard deviation (SD), average power (AVP), which had been attempted by other researchers. The performance of the TD features is studied using naïve Bayes (NB) and support vector machines (SVM) classifiers for the university of Bonn database with fourteen different combinations of set E with set A to D. The proposed scheme was also compared with other existing scheme in the literature. The implementation results showed that the proposed scheme could attain the highest accuracy of 100% for normal eyes open and epileptic data set with direct as well as DWT based TD features. For other data sets, the highest accuracy is obtained with DWT based TD features using SVM. However, no significant difference in the classification of 14 data sets with TD features filtered EEG data and from DWT of filtered EEG data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lehnertz, K.: Epilepsy and nonlinear dynamics. J. Biol. Phys. 34, 253–266 (2008)

    Article  Google Scholar 

  2. Duncan, J.S., Sander, J.W., Sisodiya, S.M., Walker, M.C.: Adult epilepsy. Lancet 367, 1087 (2006)

    Article  Google Scholar 

  3. Pradhan, N., Sadasivan, P.K., Arunodaya, G.R.: Detection of seizure activity in EEG by an artificial neural network: a preliminary study. Comput. Biomed. Res. 29, 303–313 (1996)

    Article  Google Scholar 

  4. Kiymik, V.P., Subasi, A., Ozcalik, H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizures. J. Med. Syst. 28, 511–522 (2004) Klinik für Epileptologie, Universität Bonn. In

    Google Scholar 

  5. Subasi, A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29, 343–355 (2005)

    Article  Google Scholar 

  6. Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29, 647–660 (2005)

    Article  Google Scholar 

  7. Murro, A.M., King, D.W., Smith, J.R., Gallagher, B.B., Flanigin, H.F., Meador, K.: Computerized seizure detection of complex partial seizures. Electroencephalogr. Clin. Neurophysiol. 79 (1991)

    Article  Google Scholar 

  8. Qu, H., Gotman, J.: A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans. Biomed. Eng. 44, 115–122 (1997)

    Article  Google Scholar 

  9. Gabor, A.J., Leach, R.R., Dowla, F.U.: Automated seizure detection using a self-organizing neural network. Electroencephalogr. Clin. Neurophysiol. 99, 257–266 (1996)

    Article  Google Scholar 

  10. Webber, W.R.S., Lesser, R.P., Richardson, R.T., Wilson, K.: An approach to seizure detection using an artificial neural network (ANN). Electroencephalogr. Clin. Neurophysiol. 98, 250–272 (1996)

    Article  Google Scholar 

  11. Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)

    Article  Google Scholar 

  12. Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012)

    Article  Google Scholar 

  13. Sezer, E., Işik, H., Saracoğlu, E.: Employment and comparison of different artificial neural networks for epilepsy diagnosis from EEG signals. J. Med. Syst. 36(1), 347–362 (2012)

    Article  Google Scholar 

  14. Acharya, U.R., Sree, S.V., Alvin, A.P.C., Suri, J.S.: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst. Appl. 39(10), 9072–9078 (2012)

    Article  Google Scholar 

  15. Song, Y., Zhang, J.: Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction. Expert Syst. Appl. 40(14), 5477–5489 (2013)

    Article  Google Scholar 

  16. Hosseini, S.A., Akbarzadeh-T, M.-R., Naghibi-Sistani, M.-B.: Methodology for epilepsy and epileptic seizure recognition using chaos analysis of brain signals. In: Computational Intelligence in Multi-agent Systems: Theory and Practice, pp. 20–36 (2013)

    Chapter  Google Scholar 

  17. Pachori, R.B., Patidar, S.: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic modefunctions. Comput. Methods Programs Biomed. 113, 494–502 (2013)

    Article  Google Scholar 

  18. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image Video Process. 8(7), 1323–1334 (2014)

    Article  Google Scholar 

  19. Chen, G.: Automatic EEG seizure detection using dual-tree complex wavelet-fourier features. Expert Syst. Appl. 41, 2391–2394 (2014)

    Article  Google Scholar 

  20. Riaz, F., Hassan, A., Rehman, S., Niazi, I.K., Dremstrup, K.: EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 28–35 (2016)

    Article  Google Scholar 

  21. Peker, M., Sen, B., Delen, D.: A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J. Biomed. Health Inform. 20(1), 108–118 (2016)

    Article  Google Scholar 

  22. Swami, P., Gandhi, T.K., Panigrahi, B.K., Tripathi, M., Anand, S.: A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)

    Article  Google Scholar 

  23. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K.: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J. Biomed. Health Inform. 21(4), 888–896 (2017)

    Article  Google Scholar 

  24. Sharmila, A., Geethanjali, P.: Detection of epileptic seizure from electroencephalogram signals based on feature ranking and best feature subset using mutual information estimation. J. Med. Imag. Health Inform. 6(8), 1850–1864 (2016)

    Article  Google Scholar 

  25. Sharmila, A., Geethanjali, P.: DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers. IEEE Access 4, 7716–7727 (2016)

    Article  Google Scholar 

  26. Madan, S., Srivastava, K., Sharmila, A., Mahalakshmi, P.: A case study on discrete wavelet transform based hurst exponent for epilepsy detection. J. Med. Eng. Technol. 42(1), 9–17 (2018)

    Article  Google Scholar 

  27. Sharmila, A., Aman Raj, S., Shashank, P., Mahalakshmi, P.: Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. J. Med. Eng. Technol. 42(1), 1–8 (2018)

    Article  Google Scholar 

  28. Chen, D., Wan, S., Xiang, J., Bao, F.S.: A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG. PLoS ONE 12(3), e0173138 (2017)

    Article  Google Scholar 

  29. Sharmila, A., Mahalakshmi, P.: Wavelet-based feature extraction for classification of epileptic seizure EEG signal. J. Med. Eng. Technol. 41(8), 670–680 (2017)

    Article  Google Scholar 

  30. Wang, L., Xue, W., Li, Y., Luo, M., Huang, J., Cui, W., Huang, C.: Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6), 222 (2017)

    Article  Google Scholar 

  31. Reddy, G.R.S., Rao, R.: Automated identification system for seizure EEG signals using tunable-Q wavelet transform. Eng. Sci. Tech. Int. J. 20(5), 1486–1493 (2017)

    Article  Google Scholar 

  32. Sharma, M., Pachori, R.B., Acharya, U.R.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recogn. Lett. 94, 172–179 (2017)

    Article  Google Scholar 

  33. Ullah, I., Hussain, M., Aboalsamh, H.: An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst. Appl. 107, 61–71 (2018)

    Article  Google Scholar 

  34. Geethanjali, P., Ray, K.K.: A low-cost real-time research platform for EMG pattern recognition-based prosthetic hand. IEEE/ASME Trans. Mechatron. 20(4), 1948–1955 (2015)

    Article  Google Scholar 

  35. Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)

    Article  Google Scholar 

  36. Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)

    Article  Google Scholar 

  37. Huang, H.P., Chen, C.Y.: Development of a myoelectric discrimination system for a multi-degree prosthetic hand. In: Proceedings 1999 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2392–2397 (1999)

    Google Scholar 

  38. EEG Database From University of Bonn, June 2013. http://www.epileptologiebonn.de

  39. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  40. Subha, D.P., Joseph, P.K., Acharya, R., Lim, C.M.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    Article  Google Scholar 

  41. Meier, R., Dittrich, H., Schulze-Bonhage, A., Aertsen, A.: Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J. Clin. Neurophysiol. 25(3), 119–131 (2008)

    Article  Google Scholar 

  42. Liu, A., Hahn, J.S., Heldt, G.P., Coen, R.W.: Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr. Clin. Neurophysiol. 82(1), 30–37 (1992)

    Article  Google Scholar 

  43. Viglione, S.S., Walsh, G.O.: Proceedings: epileptic seizure prediction. Electroencephalogr. Clin. Neurophysiol. 39(4), 435–436 (1975)

    Google Scholar 

  44. Rogowski, Z., Gath, I., Bental, E.: On the prediction of epileptic seizures. Biol. Cybern. 42(1), 9–15 (1981)

    Article  Google Scholar 

  45. Gotman, J.: Changes in interictal EEG spiking and seizure occurrence in humans. Epilepsia 23, 432–433 (1982)

    Google Scholar 

  46. Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116(3), 569–587 (2005)

    Article  Google Scholar 

  47. Van Drongelen, W., Nayak, S., Frim, D.M., Kohrman, M.H., Towle, V.L., Lee, H.C., Hecox, K.E.: Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr. Neurol. 29(3), 207–213 (2003)

    Article  Google Scholar 

  48. McSharry, P.E., Smith, L.A., Tarassenko, L.: Comparison of predictability of epileptic seizures by a linear and a nonlinear method. IEEE Trans. Biomed. Eng. 50(5), 628–633 (2003)

    Article  Google Scholar 

  49. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Vachtsevanos, G.: Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. In: Applications of Intelligent Control to Engineering Systems, pp. 225–245. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  50. Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H.U., Schulze-Bonhage, A., Timmer, J.: Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica D 194(3–4), 357–368 (2004)

    Article  MATH  Google Scholar 

  51. Gigola, S., Ortiz, F., D’attellis, C.E., Silva, W., Kochen, S.: Prediction of epileptic seizures using accumulated energy in a multiresolution framework. J. Neurosci. Methods 138(1–2), 107–111 (2004)

    Article  Google Scholar 

  52. Altunay, S., Telatar, Z., Erogul, O.: Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 37(8), 5661–5665 (2010)

    Article  Google Scholar 

  53. Fathima, T., Bedeeuzzaman, M., Farooq, O., Khan, Y.U.: Wavelet based features for epileptic seizure detection. MES J. Technol. Manag. 2(1), 108–112 (2011)

    Google Scholar 

  54. Yuan, Q., Zhou, W., Liu, Y., Wang, J.: Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 24(4), 415–421 (2012)

    Article  Google Scholar 

  55. Zamir, Z.R.: Detection of epileptic seizure in EEG signals using linear least squares preprocessing. Comput. Methods Programs Biomed. 133, 95–109 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Geethanjali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharmila, A., Geethanjali, P. (2020). DWT Based Time Domain Features on Detection of Epilepsy Seizures from EEG Signal. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9097-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9096-8

  • Online ISBN: 978-981-13-9097-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics