Skip to main content

Surface Electromyography (EMG) Signal Processing, Classification, and Practical Considerations

  • Chapter
  • First Online:
Biomedical Signal Processing

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Electromyography (EMG) is the process of measuring the electrical activity produced by muscles throughout the body using electrodes on the surface of the skin or inserted in the muscle. EMG pattern recognition based myoelectric control systems typically contain data pre-processing, data segmentation, feature extraction, dimensionality reduction, and classification. The real challenge for prostheses and gesture recognition interfaces are the dynamic factors that invoke changes in EMG signal characteristics. As a consequence of these factors, model inaccuracies are produced between the training phase and practical use. In this chapter, state-of-the-art EMG signal processing and classification techniques that address these dynamic factors and practical considerations are presented. Hands-busy conditions and cross-user classification models that present additional challenges for gesture recognition tasks are also explored. Finally, directions for future research are outlined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Timemy, A.H., Bugmann, G., Escudero, J., Outram, N.: A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5758–5761 (2013). https://doi.org/10.1109/EMBC.2013.6610859

  2. Al-Timemy, A.H., Khushaba, R.N., Bugmann, G., Escudero, J.: Improving the performance against force variation of emg controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 650–661 (2016). https://doi.org/10.1109/TNSRE.2015.2445634

    Article  Google Scholar 

  3. Amsüss, S., Paredes, L.P., Rudigkeit, N., Graimann, B., Herrmann, M.J., Farina, D.: Long term stability of surface EMG pattern classification for prosthetic control. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3622–3625 (2013). https://doi.org/10.1109/EMBC.2013.6610327

  4. Arjunan, S.P., Kumar, D.K.: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J. NeuroEng. Rehabil. 7(1), 53 (2010). https://doi.org/10.1186/1743-0003-7-53

    Article  Google Scholar 

  5. Asogbon, M.G., Samuel, O.W., Geng, Y., Idowu, P.O., Chen, S., R, N.G., Feng, P., Li, G.: Enhancing the robustness of EMG-PR based system against the combined influence of force variation and subject mobility. In: Proceedings 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 12–17 (2018). https://doi.org/10.1109/ACIRS.2018.8467236

  6. Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.G.M., Elsig, S., Giatsidis, G., Bassetto, F., Mller, H.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140,053 (2014). https://doi.org/10.1038/sdata.2014.53

  7. Betthauser, J.L., Hunt, C.L., Osborn, L.E., Kaliki, R.R., Thakor, N.V.: Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations. In: Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6373–6376 (2016). https://doi.org/10.1109/EMBC.2016.7592186

  8. Betthauser, J.L., Hunt, C.L., Osborn, L.E., Masters, M.R., Lvay, G., Kaliki, R.R., Thakor, N.V.: Limb position tolerant pattern recognition for myoelectric prosthesis control with adaptive sparse representations from extreme learning. IEEE Trans. Biomed. Eng. 65(4), 770–778 (2018). https://doi.org/10.1109/TBME.2017.2719400

    Article  Google Scholar 

  9. Boostani, R., Moradi, M.H.: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas. 24(2), 309 (2003)

    Article  Google Scholar 

  10. Boschmann, A., Kaufmann, P., Platzner, M., Winkler, M.: Towards multi-movement hand prostheses: combining adaptive classification with high precision sockets. In: Proceedings of Technically Assisted Rehabilitation (TAR) (2009)

    Google Scholar 

  11. Cannan, J., Hu, H.: Using forearm circumference for automatic threshold calibration for simple EMG control. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1476–1481 (2013). https://doi.org/10.1109/AIM.2013.6584303

  12. Chen, L., Geng, Y., Li, G.: Effect of upper-limb positions on motion pattern recognition using electromyography. In: Proceedings of 2011 4th International Congress on Image and Signal Processing, vol. 1, pp. 139–142 (2011). https://doi.org/10.1109/CISP.2011.6100025

  13. Chen, X., Zhang, D., Zhu, X.: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J. NeuroEng. Rehabil. 10(1), 44 (2013). https://doi.org/10.1186/1743-0003-10-44

    Article  Google Scholar 

  14. Cheng, J., Wei, F., Li, C., Liu, Y., Liu, A., Chen, X.: Position-independent gesture recognition using sEMG signals via canonical correlation analysis. Comput. Biol. Med. (2018). https://doi.org/10.1016/j.compbiomed.2018.08.020

    Article  Google Scholar 

  15. Chowdhury, R.H., Reaz, M.B.I., Ali, M.A.B.M., Bakar, A.A.A., Chellappan, K., Chang, T.G.: Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431–12466 (2013). https://doi.org/10.3390/s130912431

    Article  Google Scholar 

  16. Côté-Allard, U., Fall, C.L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., Laviolette, F., Gosselin, B.: Deep learning for electromyographic hand gesture signal classification by leveraging transfer learning (2018). arXiv:1801.07756

  17. Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003). https://doi.org/10.1109/TBME.2003.813539

    Article  Google Scholar 

  18. Farina, D., Fevotte, C., Doncarli, C., Merletti, R.: Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Trans. Biomed. Eng. 51(9), 1555–1567 (2004). https://doi.org/10.1109/TBME.2004.828048

    Article  Google Scholar 

  19. Farina, D., Lucas, M., Doncarli, C.: Optimized wavelets for blind separation of nonstationary surface myoelectric signals. IEEE Trans. Biomed. Eng. 55(1), 78–86 (2008). https://doi.org/10.1109/TBME.2007.897844

    Article  Google Scholar 

  20. Fougner, A., Scheme, E., Chan, A.D.C., Englehart, K.: Stavdahl, Ø: Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 644–651 (2011). https://doi.org/10.1109/TNSRE.2011.2163529

    Article  Google Scholar 

  21. Fraser, G.D., Chan, A.D.C., Green, J.R., Abser, N., MacIsaac, D.: CleanEMG power line interference estimation in sEMG using an adaptive least squares algorithm. In: Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7941–7944 (2011). https://doi.org/10.1109/IEMBS.2011.6091958

  22. Fraser, G.D., Chan, A.D.C., Green, J.R., MacIsaac, D.T.: Biosignal quality analysis of surface EMG using a correlation coefficient test for normality. In: Proceedings of 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 196–200 (2013). https://doi.org/10.1109/MeMeA.2013.6549735

  23. Fraser, G.D., Chan, A.D.C., Green, J.R., MacIsaac, D.T.: Automated biosignal quality analysis for electromyography using a one-class support vector machine. IEEE Trans. Instrum. Meas. 63(12), 2919–2930 (2014). https://doi.org/10.1109/TIM.2014.2317296

    Article  Google Scholar 

  24. Gazzoni, M., Celadon, N., Mastrapasqua, D., Paleari, M., Margaria, V., Ariano, P.: Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. PLoS ONE 9(10), 1–11 (2014). https://doi.org/10.1371/journal.pone.0109943

    Article  Google Scholar 

  25. Geng, Y., Ouyang, Y., Samuel, O.W., Chen, S., Lu, X., Lin, C., Li, G.: A robust sparse representation based pattern recognition approach for myoelectric control. IEEE Access 6, 38326–38335 (2018). https://doi.org/10.1109/ACCESS.2018.2851282

    Article  Google Scholar 

  26. Geng, Y., Zhou, P., Li, G.: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J. NeuroEng. Rehabil. 9(1), 74 (2012). https://doi.org/10.1186/1743-0003-9-74

    Article  Google Scholar 

  27. Gu, Y., Yang, D., Huang, Q., Yang, W., Liu, H.: Robust EMG pattern recognition in the presence of confounding factors: features, classifiers and adaptive learning. Expert Syst. Appl. 96, 208–217 (2018). https://doi.org/10.1016/j.eswa.2017.11.049

    Article  Google Scholar 

  28. Hamedi, M., Salleh, S., Ting, C., Astaraki, M., Noor, A.M.: Robust facial expression recognition for MuCI: a comprehensive neuromuscular signal analysis. IEEE Trans. Affect. Comput. 9(1), 102–115 (2018). https://doi.org/10.1109/TAFFC.2016.2569098

    Article  Google Scholar 

  29. Hargrove, L., Scheme, E., Englehart, K.: Myoelectric Prostheses and Targeted Reinnervation, chap. 15, pp. 291–310. Wiley-Blackwell (2013). https://doi.org/10.1002/9781118628522.ch15

    Google Scholar 

  30. Hargrove, L., Scheme, E., Englehart, K., Hudgins, B.: Filtering strategies for robust myoelectric pattern classification. In: CMBES Proceedings, vol. 31 (2008)

    Google Scholar 

  31. Hargrove, L.J., Scheme, E.J., Englehart, K.B., Hudgins, B.S.: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1), 49–57 (2010). https://doi.org/10.1109/TNSRE.2009.2039590

    Article  Google Scholar 

  32. Harwood, B., Edwards, D.L., Jakobi, J.M.: Age- and sex-related differences in muscle activation for a discrete functional task. Eur. J. Appl. Physiol. 103(6), 677–686 (2008). https://doi.org/10.1007/s00421-008-0765-z

    Article  Google Scholar 

  33. He, J., Zhang, D., Jiang, N., Sheng, X., Farina, D., Zhu, X.: User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. J. Neural Eng. 12(4), 046,005 (2015)

    Article  Google Scholar 

  34. He, J., Zhang, D., Sheng, X., Li, S., Zhu, X.: Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination. IEEE J. Biomed. Health Inform. 19(3), 874–882 (2015)

    Google Scholar 

  35. He, J., Zhang, D., Zhu, X.: Adaptive pattern recognition of myoelectric signal towards practical multifunctional prosthesis control. In: Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications, pp. 518–525. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  36. Jain, S., Singhal, G., Smith, R.J., Kaliki, R., Thakor, N.: Improving long term myoelectric decoding, using an adaptive classifier with label correction. In: Proceedings of 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 532–537 (2012). https://doi.org/10.1109/BioRob.2012.6290901

  37. Jiang, N., Muceli, S., Graimann, B., Farina, D.: Effect of arm position on the prediction of kinematics from EMG in amputees. Med. Biol. Eng. Comput. 51(1), 143–151 (2013). https://doi.org/10.1007/s11517-012-0979-4

    Article  Google Scholar 

  38. Kaufmann, P., Englehart, K., Platzner, M.: Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms. In: Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6357–6360 (2010). https://doi.org/10.1109/IEMBS.2010.5627288

  39. Kaufmann, P., Glette, K., Gruber, T., Platzner, M., Torresen, J., Sick, B.: Classification of electromyographic signals: comparing evolvable hardware to conventional classifiers. IEEE Trans. Evol. Comput. 17(1), 46–63 (2013). https://doi.org/10.1109/TEVC.2012.2185845

    Article  Google Scholar 

  40. Khezri, M., Jahed, M.: Surface electromyogram signal estimation based on wavelet thresholding technique. In: Proceedings of 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4752–4755 (2008). https://doi.org/10.1109/IEMBS.2008.4650275

  41. Khushaba, R.N.: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 745–755 (2014). https://doi.org/10.1109/TNSRE.2014.2304470

    Article  Google Scholar 

  42. Khushaba, R.N., Al-Timemy, A., Kodagoda, S.: Influence of multiple dynamic factors on the performance of myoelectric pattern recognition. In: Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1679–1682 (2015). https://doi.org/10.1109/EMBC.2015.7318699

  43. Khushaba, R.N., Al-Timemy, A., Kodagoda, S., Nazarpour, K.: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl. 61, 154–161 (2016). https://doi.org/10.1016/j.eswa.2016.05.031

    Article  Google Scholar 

  44. Khushaba, R.N., Kodagoda, S., Liu, D., Dissanayake, G.: Muscle computer interfaces for driver distraction reduction. Comput. Methods Programs Biomed. 110(2), 137–149 (2013). https://doi.org/10.1016/j.cmpb.2012.11.002

    Article  Google Scholar 

  45. Khushaba, R.N., Shi, L., Kodagoda, S.: Time-dependent spectral features for limb position invariant myoelectric pattern recognition. In: Proceedings of 2012 International Symposium on Communications and Information Technologies (ISCIT), pp. 1015–1020 (2012). https://doi.org/10.1109/ISCIT.2012.6380840

  46. Khushaba, R.N., Takruri, M., Miro, J.V., Kodagoda, S.: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 55, 42–58 (2014). https://doi.org/10.1016/j.neunet.2014.03.010

    Article  Google Scholar 

  47. Kim, J., Cho, D., Lee, K.J., Lee, B.: A real-time pinch-to-zoom motion detection by means of a surface EMG-based human-computer interface. Sensors 15(1), 394–407 (2015). https://doi.org/10.3390/s150100394

    Article  Google Scholar 

  48. Kuiken, T.A., Miller, L.A., Lipschutz, R.D., Lock, B.A., Stubblefield, K., Marasco, P.D., Zhou, P., Dumanian, G.A.: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. The Lancet 369(9559), 371–380 (2007). https://doi.org/10.1016/S0140-6736(07)60193-7

    Article  Google Scholar 

  49. Li, X., Fang, P., Tian, L., Li, G.: Increasing the robustness against force variation in EMG motion classification by common spatial patterns. In: Proceedings of 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 406–409 (2017). https://doi.org/10.1109/EMBC.2017.8036848

  50. Li, X., Xu, R., Samuel, O.W., Tian, L., Zou, H., Zhang, X., Chen, S., Fang, P., Li, G.: A new approach to mitigate the effect of force variation on pattern recognition for myoelectric control. In: Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1684–1687 (2016). https://doi.org/10.1109/EMBC.2016.7591039

  51. Liu, J., Sheng, X., Zhang, D., He, J., Zhu, X.: Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation. IEEE J. Biomed. Health Inform. 20(1), 166–176 (2016). https://doi.org/10.1109/JBHI.2014.2380454

    Article  Google Scholar 

  52. Liu, J., Zhang, D., He, J., Zhu, X.: Effect of dynamic change of arm position on myoelectric pattern recognition. In: Proceedings of 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1470–1475 (2012). https://doi.org/10.1109/ROBIO.2012.6491176

  53. Liu, J., Zhang, D., Sheng, X., Zhu, X.: Quantification and solutions of arm movements effect on sEMG pattern recognition. Biomed. Signal Process. Control 13, 189–197 (2014). https://doi.org/10.1016/j.bspc.2014.05.001

    Article  Google Scholar 

  54. Liu, J., Zhang, D., Sheng, X., Zhu, X.: Enhanced robustness of myoelectric pattern recognition to across-day variation through invariant feature extraction. In: Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7262–7265 (2015). https://doi.org/10.1109/EMBC.2015.7320068

  55. Luca, C.J.D., Gilmore, L.D., Kuznetsov, M., Roy, S.H.: Filtering the surface emg signal: movement artifact and baseline noise contamination. J. Biomech. 43(8), 1573–1579 (2010). https://doi.org/10.1016/j.jbiomech.2010.01.027

    Article  Google Scholar 

  56. Lv, B., Sheng, X., Guo, W., Zhu, X., Ding, H.: Towards finger gestures and force recognition based on wrist electromyography and accelerometers. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) Intelligent Robotics and Applications, pp. 373–380. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  57. Maier, J., Naber, A., Ortiz-Catalan, M.: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 506–514 (2018). https://doi.org/10.1109/TNSRE.2017.2771273

    Article  Google Scholar 

  58. Matsubara, T., Morimoto, J.: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface. IEEE Trans. Biomed. Eng. 60(8), 2205–2213 (2013). https://doi.org/10.1109/TBME.2013.2250502

    Article  Google Scholar 

  59. McCool, P., Fraser, G.D., Chan, A.D.C., Petropoulakis, L., Soraghan, J.J.: Identification of contaminant type in surface electromyography (EMG) signals. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 774–783 (2014). https://doi.org/10.1109/TNSRE.2014.2299573

    Article  Google Scholar 

  60. Milosevic, B., Farella, E., Benatti, S.: Exploring arm posture and temporal variability in myoelectric hand gesture recognition. In: Proceedings of 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1032–1037 (2018). https://doi.org/10.1109/BIOROB.2018.8487838

  61. Ortolan, R.L., Mori, R.N., Pereira, R.R., Cabral, C.M.N., Pereira, J.C., Cliquet, A.: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 60–69 (2003). https://doi.org/10.1109/TNSRE.2003.810432

    Article  Google Scholar 

  62. Oskoei, M.A., Hu, H.: Myoelectric control systems—a survey. Biomed. Signal Process. Control 2(4), 275–294 (2007). https://doi.org/10.1016/j.bspc.2007.07.009

    Article  Google Scholar 

  63. Palermo, F., Cognolato, M., Gijsberts, A., Mller, H., Caputo, B., Atzori, M.: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data. In: Proceedings of 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1154–1159 (2017). https://doi.org/10.1109/ICORR.2017.8009405

  64. Phinyomark, A., Hu, H., Phukpattaranont, P., Limsakul, C.: Application of linear discriminant analysis in dimensionality reduction for hand motion classification. Meas. Sci. Rev. 12(3), 82–89 (2012). https://doi.org/10.2478/v10048-012-0015-8

    Article  Google Scholar 

  65. Phinyomark, A., Khushaba, R.N., Ibáñez-Marcelo, E., Patania, A., Scheme, E., Petri, G.: Navigating features: a topologically informed chart of electromyographic features space. J. R. Soc. Interface 14(137) (2017). https://doi.org/10.1098/rsif.2017.0734

    Article  Google Scholar 

  66. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG feature extraction for tolerance of white Gaussian noise. In: Proceedings of International Workshop and Symposium Science Technology, pp. 178–183 (2008)

    Google Scholar 

  67. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A comparative study of wavelet denoising for multifunction myoelectric control. In: Proceedings of 2009 International Conference on Computer and Automation Engineering, pp. 21–25 (2009). https://doi.org/10.1109/ICCAE.2009.57

  68. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG denoising estimation based on adaptive wavelet thresholding for multifunction myoelectric control. In: Proceedings of 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, pp. 171–176 (2009). https://doi.org/10.1109/CITISIA.2009.5224220

  69. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG feature extraction for tolerance of 50 Hz interference. In: Proceedings of PSU-UNS International Conference on Engineering Technologies, pp. 289–293 (2009)

    Google Scholar 

  70. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. J. Comput. 1(1), 71–80 (2009)

    Google Scholar 

  71. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: An optimal wavelet function based on wavelet denoising for multifunction myoelectric control. In: Proceedings of 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 02, pp. 1098–1101 (2009). https://doi.org/10.1109/ECTICON.2009.5137236

  72. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG signal estimation based on adaptive wavelet shrinkage for multifunction myoelectric control. In: Proceedings of 2010 7th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 322–326 (2010)

    Google Scholar 

  73. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Optimal wavelet functions in wavelet denoising for multifunction myoelectric control. ECTI Trans. Electr. Eng. Electron. Commun. 8(1), 43–52 (2010)

    Google Scholar 

  74. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Application of wavelet analysis in EMG feature extraction for pattern classification. Meas. Sci. Rev. 11(2), 45–52 (2011). https://doi.org/10.2478/v10048-011-0009-y

    Article  Google Scholar 

  75. Phinyomark, A., Khushaba, R.N., Scheme, E.: Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors 18(5), 1615 (2018). https://doi.org/10.3390/s18051615

    Article  Google Scholar 

  76. Phinyomark, A., Nuidod, A., Phukpattaranont, P., Limsakul, C.: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Elektron. Elektrotech. 122(6) (2012). https://doi.org/10.5755/j01.eee.122.6.1816

  77. Phinyomark, A., Phothisonothai, M., Phukpattaranont, P., Limsakul, C.: Critical exponent analysis applied to surface EMG signals for gesture recognition. Metrol. Meas. Syst. 18(4), 645–658 (2011)

    Article  Google Scholar 

  78. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: EMG signal denoising via adaptive wavelet shrinkage for multifunction upper-limb prosthesis. In: Proceedings of 3rd Biomedical Engineering International Conference, pp. 35–41 (2010)

    Google Scholar 

  79. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: A review of control methods for electric power wheelchairs based on electromyography signals with special emphasis on pattern recognition. IETE Techn. Rev. 28(4), 316–326 (2011). https://doi.org/10.4103/0256-4602.83552

    Article  Google Scholar 

  80. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Wavelet-based denoising algorithm for robust EMG pattern recognition. Fluct. Noise Lett. 10(2), 157–167 (2011). https://doi.org/10.1142/S0219477511000466

    Article  Google Scholar 

  81. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012). https://doi.org/10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  82. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Fractal analysis features for weak and single-channel upper-limb EMG signal. Expert Syst. Appl. 39(12), 11156–11163 (2012). https://doi.org/10.1016/j.eswa.2012.03.039

    Article  Google Scholar 

  83. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification. Fluct. Noise Lett. 11(4), 1250,028 (2012). https://doi.org/10.1142/S0219477512500289

    Article  Google Scholar 

  84. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: The usefulness of wavelet transform to reduce noise in the SEMG signal. In: Schwartz, M. (ed.) EMG Methods for Evaluating Muscle and Nerve Function, chap. 7. IntechOpen, Rijeka (2012). https://doi.org/10.5772/25757

    Google Scholar 

  85. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Applications of variance fractal dimension: a survey. Fractals 22(01n02), 1450,003 (2014). https://doi.org/10.1142/S0218348X14500030

    Article  Google Scholar 

  86. Phinyomark, A., Phukpattaranont, P., Limsakul, C., Phothisonothai, M.: Electromyography (EMG) signal classification based on detrended fluctuation analysis. Fluct. Noise Lett. 10(3), 281–301 (2011). https://doi.org/10.1142/S0219477511000570

    Article  Google Scholar 

  87. Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 40(12), 4832–4840 (2013). https://doi.org/10.1016/j.eswa.2013.02.023

    Article  Google Scholar 

  88. Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: A feasibility study on the use of anthropometric variables to make musclecomputer interface more practical. Eng. Appl. Artif. Intell. 26(7), 1681–1688 (2013). https://doi.org/10.1016/j.engappai.2013.01.004

    Article  Google Scholar 

  89. Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 117(2), 247–256 (2014). https://doi.org/10.1016/j.cmpb.2014.06.013

    Article  Google Scholar 

  90. Phinyomark, A., Quaine, F., Laurillau, Y.: The relationship between anthropometric variables and features of electromyography signal for humancomputer interface. In: Naik, G. (ed.) Applications, Challenges, and Advancements in Electromyography Signal Processing, chap. 15. IGI Global, Hershey, PA (2014). https://doi.org/10.4018/978-1-4666-6090-8.ch015

  91. Phinyomark, A., Quaine, F., Laurillau, Y., Thongpanja, S., Limsakul, C., Phukpattaranont, P.: EMG amplitude estimators based on probability distribution for muscle-computer interface. Fluct. Noise Lett. 12(3), 1350,016 (2013). https://doi.org/10.1142/S0219477513500168

    Article  Google Scholar 

  92. Phinyomark, A., Scheme, E.: EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2(3), 21 (2018). https://doi.org/10.3390/bdcc2030021

    Article  Google Scholar 

  93. Phinyomark, A., Scheme, E.: A feature extraction issue for myoelectric control based on wearable EMG sensors. In: Proceedings of 2018 IEEE Sensors Applications Symposium (SAS), pp. 1–6 (2018). https://doi.org/10.1109/SAS.2018.8336753

  94. Powar, O.S., Chemmangat, K., Figarado, S.: A novel pre-processing procedure for enhanced feature extraction and characterization of electromyogram signals. Biomed. Signal Process. Control 42, 277–286 (2018). https://doi.org/10.1016/j.bspc.2018.02.006

    Article  Google Scholar 

  95. Radmand, A., Scheme, E., Englehart, K.: On the suitability of integrating accelerometry data with electromyography signals for resolving the effect of changes in limb position during dynamic limb movement. J. Prosthet. Orthot. 26(4), 185–193 (2014). https://doi.org/10.1097/JPO.0000000000000041

    Article  Google Scholar 

  96. Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8(1), 11–35 (2006). https://doi.org/10.1251/bpo115

    Article  Google Scholar 

  97. Zia ur Rehman, M., Waris, A., Gilani, S.O., Jochumsen, M., Niazi, I.K., Jamil, M., Farina, D., Kamavuako, E.N.: Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 18(8), 2497 (2018). https://doi.org/10.3390/s18082497

    Article  Google Scholar 

  98. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R.: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 515–524. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1357054.1357138

  99. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R., Turner, J., Landay, J.A.: Enabling always-available input with muscle-computer interfaces. In: Proceedings of 22nd Annual ACM Symposium on User Interface Software and Technology, UIST ’09, pp. 167–176. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1622176.1622208

  100. Saponas, T.S., Tan, D.S., Morris, D., Turner, J., Landay, J.A.: Making muscle-computer interfaces more practical. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 851–854. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1753326.1753451

  101. Scheme, E., Biron, K., Englehart, K.: Improving myoelectric pattern recognition positional robustness using advanced training protocols. In: Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4828–4831 (2011)

    Google Scholar 

  102. Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6), 643–660 (2011). https://doi.org/10.1682/JRRD.2010.09.0177

    Article  Google Scholar 

  103. Scheme, E., Englehart, K.: Training strategies for mitigating the effect of proportional control on classification in pattern recognition based myoelectric control. J. Prosthet. Orthot. 25(2), 76–83 (2013). https://doi.org/10.1097/JPO.0b013e318289950b

    Article  Google Scholar 

  104. Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A.D.C., Englehart, K.: Examining the adverse effects of limb position on pattern recognition based myoelectric control. In: Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6337–6340 (2010). https://doi.org/10.1109/IEMBS.2010.5627638

  105. Scheme, E., Lock, B., Hargrove, L., Hill, W., Kuruganti, U., Englehart, K.: Motion normalized proportional control for improved pattern recognition-based myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 149–157 (2014). https://doi.org/10.1109/TNSRE.2013.2247421

    Article  Google Scholar 

  106. Tabor, A., Bateman, S., Scheme, E.: Evaluation of myoelectric control learning using multi-session game-based training. IEEE Trans. Neural Syst. Rehabil. Eng. 26(9), 1680–1689 (2018). https://doi.org/10.1109/TNSRE.2018.2855561

    Article  Google Scholar 

  107. Theou, O., Edwards, D., Jones, G.R., Jakobi, J.M.: Age-related increase in electromyography burst activity in males and females. J. Aging Res. 2013, 720,246 (2013). https://doi.org/10.1155/2013/720246

    Article  Google Scholar 

  108. Thongpanja, S., Phinyomark, A., Hu, H., Limsakul, C., Phukpattaranont, P.: The effects of the force of contraction and elbow joint angle on mean and median frequency analysis for muscle fatigue evaluation. ScienceAsia 41(4), 263–272 (2015). https://doi.org/10.2306/scienceasia1513-1874.2015.41.263

    Article  Google Scholar 

  109. Thongpanja, S., Phinyomark, A., Quaine, F., Laurillau, Y., Limsakul, C., Phukpattaranont, P.: Probability density functions of stationary surface EMG signals in noisy environments. IEEE Trans. Instrum. Meas. 65(7), 1547–1557 (2016). https://doi.org/10.1109/TIM.2016.2534378

    Article  Google Scholar 

  110. Tkach, D., Huang, H., Kuiken, T.A.: Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7(1), 21 (2010). https://doi.org/10.1186/1743-0003-7-21

    Article  Google Scholar 

  111. Vidovic, M.M., Hwang, H., Amsss, S., Hahne, J.M., Farina, D., Mller, K.: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(9), 961–970 (2016). https://doi.org/10.1109/TNSRE.2015.2492619

    Article  Google Scholar 

  112. Waris, A., Niazi, I.K., Jamil, M., Englehart, K., Jensen, W., Kamavuako, E.N.: Multiday evaluation of techniques for EMG based classification of hand motions. IEEE J. Biomed. Health Inform. 1–1 (2018). https://doi.org/10.1109/JBHI.2018.2864335

    Article  Google Scholar 

  113. Waris, A., Niazi, I.K., Jamil, M., Gilani, O., Englehart, K., Jensen, W., Shafique, M., Kamavuako, E.N.: The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. J. Electromyogr. Kinesiol. 40, 72–80 (2018). https://doi.org/10.1016/j.jelekin.2018.04.004

    Article  Google Scholar 

  114. Xiang, C., Lantz, V., Kong-Qiao, W., Zhang-Yan, Z., Xu, Z., Ji-Hai, Y.: Feasibility of building robust surface electromyography-based hand gesture interfaces. In: Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2983–2986 (2009). https://doi.org/10.1109/IEMBS.2009.5332524

  115. Yang, D., Yang, W., Huang, Q., Liu, H.: Classification of multiple finger motions during dynamic upper limb movements. IEEE J. Biomed. Health Inform. 21(1), 134–141 (2017). https://doi.org/10.1109/JBHI.2015.2490718

    Article  Google Scholar 

  116. Yu, Y., Sheng, X., Guo, W., Zhu, X.: Attenuating the impact of limb position on surface EMG pattern recognition using a mixed-LDA classifier. In: Proceedings of 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1497–1502 (2017). https://doi.org/10.1109/ROBIO.2017.8324629

  117. Zardoshti-Kermani, M., Wheeler, B.C., Badie, K., Hashemi, R.M.: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 3(4), 324–333 (1995). https://doi.org/10.1109/86.481972

    Article  Google Scholar 

  118. Zhai, X., Jelfs, B., Chan, R.H.M., Tin, C.: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11, 379 (2017). https://doi.org/10.3389/fnins.2017.00379

    Article  Google Scholar 

  119. Zhang, H., Zhao, Y., Yao, F., Xu, L., Shang, P., Li, G.: An adaptation strategy of using LDA classifier for EMG pattern recognition. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4267–4270 (2013). https://doi.org/10.1109/EMBC.2013.6610488

  120. Zhang, X., Chen, X., Zhao, Z., Li, Q., Yang, J., Lantz, V., Wang, K.: An adaptive feature extractor for gesture SEMG recognition. In: Zhang, D. (ed.) Medical Biometrics, pp. 83–90. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  121. Zhou, P., Lock, B., Kuiken, T.A.: Real time ECG artifact removal for myoelectric prosthesis control. Physiol. Meas. 28(4), 397 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angkoon Phinyomark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phinyomark, A., Campbell, E., Scheme, E. (2020). Surface Electromyography (EMG) Signal Processing, Classification, and Practical Considerations. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9097-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9096-8

  • Online ISBN: 978-981-13-9097-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics