Abstract
Electromyography (EMG) is the process of measuring the electrical activity produced by muscles throughout the body using electrodes on the surface of the skin or inserted in the muscle. EMG pattern recognition based myoelectric control systems typically contain data pre-processing, data segmentation, feature extraction, dimensionality reduction, and classification. The real challenge for prostheses and gesture recognition interfaces are the dynamic factors that invoke changes in EMG signal characteristics. As a consequence of these factors, model inaccuracies are produced between the training phase and practical use. In this chapter, state-of-the-art EMG signal processing and classification techniques that address these dynamic factors and practical considerations are presented. Hands-busy conditions and cross-user classification models that present additional challenges for gesture recognition tasks are also explored. Finally, directions for future research are outlined and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Timemy, A.H., Bugmann, G., Escudero, J., Outram, N.: A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5758–5761 (2013). https://doi.org/10.1109/EMBC.2013.6610859
Al-Timemy, A.H., Khushaba, R.N., Bugmann, G., Escudero, J.: Improving the performance against force variation of emg controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 650–661 (2016). https://doi.org/10.1109/TNSRE.2015.2445634
Amsüss, S., Paredes, L.P., Rudigkeit, N., Graimann, B., Herrmann, M.J., Farina, D.: Long term stability of surface EMG pattern classification for prosthetic control. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3622–3625 (2013). https://doi.org/10.1109/EMBC.2013.6610327
Arjunan, S.P., Kumar, D.K.: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J. NeuroEng. Rehabil. 7(1), 53 (2010). https://doi.org/10.1186/1743-0003-7-53
Asogbon, M.G., Samuel, O.W., Geng, Y., Idowu, P.O., Chen, S., R, N.G., Feng, P., Li, G.: Enhancing the robustness of EMG-PR based system against the combined influence of force variation and subject mobility. In: Proceedings 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 12–17 (2018). https://doi.org/10.1109/ACIRS.2018.8467236
Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.G.M., Elsig, S., Giatsidis, G., Bassetto, F., Mller, H.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140,053 (2014). https://doi.org/10.1038/sdata.2014.53
Betthauser, J.L., Hunt, C.L., Osborn, L.E., Kaliki, R.R., Thakor, N.V.: Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations. In: Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6373–6376 (2016). https://doi.org/10.1109/EMBC.2016.7592186
Betthauser, J.L., Hunt, C.L., Osborn, L.E., Masters, M.R., Lvay, G., Kaliki, R.R., Thakor, N.V.: Limb position tolerant pattern recognition for myoelectric prosthesis control with adaptive sparse representations from extreme learning. IEEE Trans. Biomed. Eng. 65(4), 770–778 (2018). https://doi.org/10.1109/TBME.2017.2719400
Boostani, R., Moradi, M.H.: Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Meas. 24(2), 309 (2003)
Boschmann, A., Kaufmann, P., Platzner, M., Winkler, M.: Towards multi-movement hand prostheses: combining adaptive classification with high precision sockets. In: Proceedings of Technically Assisted Rehabilitation (TAR) (2009)
Cannan, J., Hu, H.: Using forearm circumference for automatic threshold calibration for simple EMG control. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1476–1481 (2013). https://doi.org/10.1109/AIM.2013.6584303
Chen, L., Geng, Y., Li, G.: Effect of upper-limb positions on motion pattern recognition using electromyography. In: Proceedings of 2011 4th International Congress on Image and Signal Processing, vol. 1, pp. 139–142 (2011). https://doi.org/10.1109/CISP.2011.6100025
Chen, X., Zhang, D., Zhu, X.: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J. NeuroEng. Rehabil. 10(1), 44 (2013). https://doi.org/10.1186/1743-0003-10-44
Cheng, J., Wei, F., Li, C., Liu, Y., Liu, A., Chen, X.: Position-independent gesture recognition using sEMG signals via canonical correlation analysis. Comput. Biol. Med. (2018). https://doi.org/10.1016/j.compbiomed.2018.08.020
Chowdhury, R.H., Reaz, M.B.I., Ali, M.A.B.M., Bakar, A.A.A., Chellappan, K., Chang, T.G.: Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431–12466 (2013). https://doi.org/10.3390/s130912431
Côté-Allard, U., Fall, C.L., Drouin, A., Campeau-Lecours, A., Gosselin, C., Glette, K., Laviolette, F., Gosselin, B.: Deep learning for electromyographic hand gesture signal classification by leveraging transfer learning (2018). arXiv:1801.07756
Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003). https://doi.org/10.1109/TBME.2003.813539
Farina, D., Fevotte, C., Doncarli, C., Merletti, R.: Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Trans. Biomed. Eng. 51(9), 1555–1567 (2004). https://doi.org/10.1109/TBME.2004.828048
Farina, D., Lucas, M., Doncarli, C.: Optimized wavelets for blind separation of nonstationary surface myoelectric signals. IEEE Trans. Biomed. Eng. 55(1), 78–86 (2008). https://doi.org/10.1109/TBME.2007.897844
Fougner, A., Scheme, E., Chan, A.D.C., Englehart, K.: Stavdahl, Ø: Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 644–651 (2011). https://doi.org/10.1109/TNSRE.2011.2163529
Fraser, G.D., Chan, A.D.C., Green, J.R., Abser, N., MacIsaac, D.: CleanEMG power line interference estimation in sEMG using an adaptive least squares algorithm. In: Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7941–7944 (2011). https://doi.org/10.1109/IEMBS.2011.6091958
Fraser, G.D., Chan, A.D.C., Green, J.R., MacIsaac, D.T.: Biosignal quality analysis of surface EMG using a correlation coefficient test for normality. In: Proceedings of 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 196–200 (2013). https://doi.org/10.1109/MeMeA.2013.6549735
Fraser, G.D., Chan, A.D.C., Green, J.R., MacIsaac, D.T.: Automated biosignal quality analysis for electromyography using a one-class support vector machine. IEEE Trans. Instrum. Meas. 63(12), 2919–2930 (2014). https://doi.org/10.1109/TIM.2014.2317296
Gazzoni, M., Celadon, N., Mastrapasqua, D., Paleari, M., Margaria, V., Ariano, P.: Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. PLoS ONE 9(10), 1–11 (2014). https://doi.org/10.1371/journal.pone.0109943
Geng, Y., Ouyang, Y., Samuel, O.W., Chen, S., Lu, X., Lin, C., Li, G.: A robust sparse representation based pattern recognition approach for myoelectric control. IEEE Access 6, 38326–38335 (2018). https://doi.org/10.1109/ACCESS.2018.2851282
Geng, Y., Zhou, P., Li, G.: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J. NeuroEng. Rehabil. 9(1), 74 (2012). https://doi.org/10.1186/1743-0003-9-74
Gu, Y., Yang, D., Huang, Q., Yang, W., Liu, H.: Robust EMG pattern recognition in the presence of confounding factors: features, classifiers and adaptive learning. Expert Syst. Appl. 96, 208–217 (2018). https://doi.org/10.1016/j.eswa.2017.11.049
Hamedi, M., Salleh, S., Ting, C., Astaraki, M., Noor, A.M.: Robust facial expression recognition for MuCI: a comprehensive neuromuscular signal analysis. IEEE Trans. Affect. Comput. 9(1), 102–115 (2018). https://doi.org/10.1109/TAFFC.2016.2569098
Hargrove, L., Scheme, E., Englehart, K.: Myoelectric Prostheses and Targeted Reinnervation, chap. 15, pp. 291–310. Wiley-Blackwell (2013). https://doi.org/10.1002/9781118628522.ch15
Hargrove, L., Scheme, E., Englehart, K., Hudgins, B.: Filtering strategies for robust myoelectric pattern classification. In: CMBES Proceedings, vol. 31 (2008)
Hargrove, L.J., Scheme, E.J., Englehart, K.B., Hudgins, B.S.: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1), 49–57 (2010). https://doi.org/10.1109/TNSRE.2009.2039590
Harwood, B., Edwards, D.L., Jakobi, J.M.: Age- and sex-related differences in muscle activation for a discrete functional task. Eur. J. Appl. Physiol. 103(6), 677–686 (2008). https://doi.org/10.1007/s00421-008-0765-z
He, J., Zhang, D., Jiang, N., Sheng, X., Farina, D., Zhu, X.: User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. J. Neural Eng. 12(4), 046,005 (2015)
He, J., Zhang, D., Sheng, X., Li, S., Zhu, X.: Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination. IEEE J. Biomed. Health Inform. 19(3), 874–882 (2015)
He, J., Zhang, D., Zhu, X.: Adaptive pattern recognition of myoelectric signal towards practical multifunctional prosthesis control. In: Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications, pp. 518–525. Springer, Berlin, Heidelberg (2012)
Jain, S., Singhal, G., Smith, R.J., Kaliki, R., Thakor, N.: Improving long term myoelectric decoding, using an adaptive classifier with label correction. In: Proceedings of 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 532–537 (2012). https://doi.org/10.1109/BioRob.2012.6290901
Jiang, N., Muceli, S., Graimann, B., Farina, D.: Effect of arm position on the prediction of kinematics from EMG in amputees. Med. Biol. Eng. Comput. 51(1), 143–151 (2013). https://doi.org/10.1007/s11517-012-0979-4
Kaufmann, P., Englehart, K., Platzner, M.: Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms. In: Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6357–6360 (2010). https://doi.org/10.1109/IEMBS.2010.5627288
Kaufmann, P., Glette, K., Gruber, T., Platzner, M., Torresen, J., Sick, B.: Classification of electromyographic signals: comparing evolvable hardware to conventional classifiers. IEEE Trans. Evol. Comput. 17(1), 46–63 (2013). https://doi.org/10.1109/TEVC.2012.2185845
Khezri, M., Jahed, M.: Surface electromyogram signal estimation based on wavelet thresholding technique. In: Proceedings of 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4752–4755 (2008). https://doi.org/10.1109/IEMBS.2008.4650275
Khushaba, R.N.: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 745–755 (2014). https://doi.org/10.1109/TNSRE.2014.2304470
Khushaba, R.N., Al-Timemy, A., Kodagoda, S.: Influence of multiple dynamic factors on the performance of myoelectric pattern recognition. In: Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1679–1682 (2015). https://doi.org/10.1109/EMBC.2015.7318699
Khushaba, R.N., Al-Timemy, A., Kodagoda, S., Nazarpour, K.: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl. 61, 154–161 (2016). https://doi.org/10.1016/j.eswa.2016.05.031
Khushaba, R.N., Kodagoda, S., Liu, D., Dissanayake, G.: Muscle computer interfaces for driver distraction reduction. Comput. Methods Programs Biomed. 110(2), 137–149 (2013). https://doi.org/10.1016/j.cmpb.2012.11.002
Khushaba, R.N., Shi, L., Kodagoda, S.: Time-dependent spectral features for limb position invariant myoelectric pattern recognition. In: Proceedings of 2012 International Symposium on Communications and Information Technologies (ISCIT), pp. 1015–1020 (2012). https://doi.org/10.1109/ISCIT.2012.6380840
Khushaba, R.N., Takruri, M., Miro, J.V., Kodagoda, S.: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 55, 42–58 (2014). https://doi.org/10.1016/j.neunet.2014.03.010
Kim, J., Cho, D., Lee, K.J., Lee, B.: A real-time pinch-to-zoom motion detection by means of a surface EMG-based human-computer interface. Sensors 15(1), 394–407 (2015). https://doi.org/10.3390/s150100394
Kuiken, T.A., Miller, L.A., Lipschutz, R.D., Lock, B.A., Stubblefield, K., Marasco, P.D., Zhou, P., Dumanian, G.A.: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. The Lancet 369(9559), 371–380 (2007). https://doi.org/10.1016/S0140-6736(07)60193-7
Li, X., Fang, P., Tian, L., Li, G.: Increasing the robustness against force variation in EMG motion classification by common spatial patterns. In: Proceedings of 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 406–409 (2017). https://doi.org/10.1109/EMBC.2017.8036848
Li, X., Xu, R., Samuel, O.W., Tian, L., Zou, H., Zhang, X., Chen, S., Fang, P., Li, G.: A new approach to mitigate the effect of force variation on pattern recognition for myoelectric control. In: Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1684–1687 (2016). https://doi.org/10.1109/EMBC.2016.7591039
Liu, J., Sheng, X., Zhang, D., He, J., Zhu, X.: Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation. IEEE J. Biomed. Health Inform. 20(1), 166–176 (2016). https://doi.org/10.1109/JBHI.2014.2380454
Liu, J., Zhang, D., He, J., Zhu, X.: Effect of dynamic change of arm position on myoelectric pattern recognition. In: Proceedings of 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1470–1475 (2012). https://doi.org/10.1109/ROBIO.2012.6491176
Liu, J., Zhang, D., Sheng, X., Zhu, X.: Quantification and solutions of arm movements effect on sEMG pattern recognition. Biomed. Signal Process. Control 13, 189–197 (2014). https://doi.org/10.1016/j.bspc.2014.05.001
Liu, J., Zhang, D., Sheng, X., Zhu, X.: Enhanced robustness of myoelectric pattern recognition to across-day variation through invariant feature extraction. In: Proceedings of 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7262–7265 (2015). https://doi.org/10.1109/EMBC.2015.7320068
Luca, C.J.D., Gilmore, L.D., Kuznetsov, M., Roy, S.H.: Filtering the surface emg signal: movement artifact and baseline noise contamination. J. Biomech. 43(8), 1573–1579 (2010). https://doi.org/10.1016/j.jbiomech.2010.01.027
Lv, B., Sheng, X., Guo, W., Zhu, X., Ding, H.: Towards finger gestures and force recognition based on wrist electromyography and accelerometers. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) Intelligent Robotics and Applications, pp. 373–380. Springer International Publishing, Cham (2017)
Maier, J., Naber, A., Ortiz-Catalan, M.: Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 506–514 (2018). https://doi.org/10.1109/TNSRE.2017.2771273
Matsubara, T., Morimoto, J.: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface. IEEE Trans. Biomed. Eng. 60(8), 2205–2213 (2013). https://doi.org/10.1109/TBME.2013.2250502
McCool, P., Fraser, G.D., Chan, A.D.C., Petropoulakis, L., Soraghan, J.J.: Identification of contaminant type in surface electromyography (EMG) signals. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 774–783 (2014). https://doi.org/10.1109/TNSRE.2014.2299573
Milosevic, B., Farella, E., Benatti, S.: Exploring arm posture and temporal variability in myoelectric hand gesture recognition. In: Proceedings of 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1032–1037 (2018). https://doi.org/10.1109/BIOROB.2018.8487838
Ortolan, R.L., Mori, R.N., Pereira, R.R., Cabral, C.M.N., Pereira, J.C., Cliquet, A.: Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 60–69 (2003). https://doi.org/10.1109/TNSRE.2003.810432
Oskoei, M.A., Hu, H.: Myoelectric control systems—a survey. Biomed. Signal Process. Control 2(4), 275–294 (2007). https://doi.org/10.1016/j.bspc.2007.07.009
Palermo, F., Cognolato, M., Gijsberts, A., Mller, H., Caputo, B., Atzori, M.: Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data. In: Proceedings of 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1154–1159 (2017). https://doi.org/10.1109/ICORR.2017.8009405
Phinyomark, A., Hu, H., Phukpattaranont, P., Limsakul, C.: Application of linear discriminant analysis in dimensionality reduction for hand motion classification. Meas. Sci. Rev. 12(3), 82–89 (2012). https://doi.org/10.2478/v10048-012-0015-8
Phinyomark, A., Khushaba, R.N., Ibáñez-Marcelo, E., Patania, A., Scheme, E., Petri, G.: Navigating features: a topologically informed chart of electromyographic features space. J. R. Soc. Interface 14(137) (2017). https://doi.org/10.1098/rsif.2017.0734
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG feature extraction for tolerance of white Gaussian noise. In: Proceedings of International Workshop and Symposium Science Technology, pp. 178–183 (2008)
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A comparative study of wavelet denoising for multifunction myoelectric control. In: Proceedings of 2009 International Conference on Computer and Automation Engineering, pp. 21–25 (2009). https://doi.org/10.1109/ICCAE.2009.57
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG denoising estimation based on adaptive wavelet thresholding for multifunction myoelectric control. In: Proceedings of 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, pp. 171–176 (2009). https://doi.org/10.1109/CITISIA.2009.5224220
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG feature extraction for tolerance of 50 Hz interference. In: Proceedings of PSU-UNS International Conference on Engineering Technologies, pp. 289–293 (2009)
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. J. Comput. 1(1), 71–80 (2009)
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: An optimal wavelet function based on wavelet denoising for multifunction myoelectric control. In: Proceedings of 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. 02, pp. 1098–1101 (2009). https://doi.org/10.1109/ECTICON.2009.5137236
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: EMG signal estimation based on adaptive wavelet shrinkage for multifunction myoelectric control. In: Proceedings of 2010 7th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 322–326 (2010)
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Optimal wavelet functions in wavelet denoising for multifunction myoelectric control. ECTI Trans. Electr. Eng. Electron. Commun. 8(1), 43–52 (2010)
Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Application of wavelet analysis in EMG feature extraction for pattern classification. Meas. Sci. Rev. 11(2), 45–52 (2011). https://doi.org/10.2478/v10048-011-0009-y
Phinyomark, A., Khushaba, R.N., Scheme, E.: Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors 18(5), 1615 (2018). https://doi.org/10.3390/s18051615
Phinyomark, A., Nuidod, A., Phukpattaranont, P., Limsakul, C.: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Elektron. Elektrotech. 122(6) (2012). https://doi.org/10.5755/j01.eee.122.6.1816
Phinyomark, A., Phothisonothai, M., Phukpattaranont, P., Limsakul, C.: Critical exponent analysis applied to surface EMG signals for gesture recognition. Metrol. Meas. Syst. 18(4), 645–658 (2011)
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: EMG signal denoising via adaptive wavelet shrinkage for multifunction upper-limb prosthesis. In: Proceedings of 3rd Biomedical Engineering International Conference, pp. 35–41 (2010)
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: A review of control methods for electric power wheelchairs based on electromyography signals with special emphasis on pattern recognition. IETE Techn. Rev. 28(4), 316–326 (2011). https://doi.org/10.4103/0256-4602.83552
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Wavelet-based denoising algorithm for robust EMG pattern recognition. Fluct. Noise Lett. 10(2), 157–167 (2011). https://doi.org/10.1142/S0219477511000466
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012). https://doi.org/10.1016/j.eswa.2012.01.102
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Fractal analysis features for weak and single-channel upper-limb EMG signal. Expert Syst. Appl. 39(12), 11156–11163 (2012). https://doi.org/10.1016/j.eswa.2012.03.039
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification. Fluct. Noise Lett. 11(4), 1250,028 (2012). https://doi.org/10.1142/S0219477512500289
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: The usefulness of wavelet transform to reduce noise in the SEMG signal. In: Schwartz, M. (ed.) EMG Methods for Evaluating Muscle and Nerve Function, chap. 7. IntechOpen, Rijeka (2012). https://doi.org/10.5772/25757
Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Applications of variance fractal dimension: a survey. Fractals 22(01n02), 1450,003 (2014). https://doi.org/10.1142/S0218348X14500030
Phinyomark, A., Phukpattaranont, P., Limsakul, C., Phothisonothai, M.: Electromyography (EMG) signal classification based on detrended fluctuation analysis. Fluct. Noise Lett. 10(3), 281–301 (2011). https://doi.org/10.1142/S0219477511000570
Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 40(12), 4832–4840 (2013). https://doi.org/10.1016/j.eswa.2013.02.023
Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: A feasibility study on the use of anthropometric variables to make musclecomputer interface more practical. Eng. Appl. Artif. Intell. 26(7), 1681–1688 (2013). https://doi.org/10.1016/j.engappai.2013.01.004
Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., Laurillau, Y.: Feature extraction of the first difference of EMG time series for EMG pattern recognition. Comput. Methods Programs Biomed. 117(2), 247–256 (2014). https://doi.org/10.1016/j.cmpb.2014.06.013
Phinyomark, A., Quaine, F., Laurillau, Y.: The relationship between anthropometric variables and features of electromyography signal for humancomputer interface. In: Naik, G. (ed.) Applications, Challenges, and Advancements in Electromyography Signal Processing, chap. 15. IGI Global, Hershey, PA (2014). https://doi.org/10.4018/978-1-4666-6090-8.ch015
Phinyomark, A., Quaine, F., Laurillau, Y., Thongpanja, S., Limsakul, C., Phukpattaranont, P.: EMG amplitude estimators based on probability distribution for muscle-computer interface. Fluct. Noise Lett. 12(3), 1350,016 (2013). https://doi.org/10.1142/S0219477513500168
Phinyomark, A., Scheme, E.: EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2(3), 21 (2018). https://doi.org/10.3390/bdcc2030021
Phinyomark, A., Scheme, E.: A feature extraction issue for myoelectric control based on wearable EMG sensors. In: Proceedings of 2018 IEEE Sensors Applications Symposium (SAS), pp. 1–6 (2018). https://doi.org/10.1109/SAS.2018.8336753
Powar, O.S., Chemmangat, K., Figarado, S.: A novel pre-processing procedure for enhanced feature extraction and characterization of electromyogram signals. Biomed. Signal Process. Control 42, 277–286 (2018). https://doi.org/10.1016/j.bspc.2018.02.006
Radmand, A., Scheme, E., Englehart, K.: On the suitability of integrating accelerometry data with electromyography signals for resolving the effect of changes in limb position during dynamic limb movement. J. Prosthet. Orthot. 26(4), 185–193 (2014). https://doi.org/10.1097/JPO.0000000000000041
Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8(1), 11–35 (2006). https://doi.org/10.1251/bpo115
Zia ur Rehman, M., Waris, A., Gilani, S.O., Jochumsen, M., Niazi, I.K., Jamil, M., Farina, D., Kamavuako, E.N.: Multiday EMG-based classification of hand motions with deep learning techniques. Sensors 18(8), 2497 (2018). https://doi.org/10.3390/s18082497
Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R.: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 515–524. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1357054.1357138
Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R., Turner, J., Landay, J.A.: Enabling always-available input with muscle-computer interfaces. In: Proceedings of 22nd Annual ACM Symposium on User Interface Software and Technology, UIST ’09, pp. 167–176. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1622176.1622208
Saponas, T.S., Tan, D.S., Morris, D., Turner, J., Landay, J.A.: Making muscle-computer interfaces more practical. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 851–854. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1753326.1753451
Scheme, E., Biron, K., Englehart, K.: Improving myoelectric pattern recognition positional robustness using advanced training protocols. In: Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4828–4831 (2011)
Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6), 643–660 (2011). https://doi.org/10.1682/JRRD.2010.09.0177
Scheme, E., Englehart, K.: Training strategies for mitigating the effect of proportional control on classification in pattern recognition based myoelectric control. J. Prosthet. Orthot. 25(2), 76–83 (2013). https://doi.org/10.1097/JPO.0b013e318289950b
Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A.D.C., Englehart, K.: Examining the adverse effects of limb position on pattern recognition based myoelectric control. In: Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6337–6340 (2010). https://doi.org/10.1109/IEMBS.2010.5627638
Scheme, E., Lock, B., Hargrove, L., Hill, W., Kuruganti, U., Englehart, K.: Motion normalized proportional control for improved pattern recognition-based myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 149–157 (2014). https://doi.org/10.1109/TNSRE.2013.2247421
Tabor, A., Bateman, S., Scheme, E.: Evaluation of myoelectric control learning using multi-session game-based training. IEEE Trans. Neural Syst. Rehabil. Eng. 26(9), 1680–1689 (2018). https://doi.org/10.1109/TNSRE.2018.2855561
Theou, O., Edwards, D., Jones, G.R., Jakobi, J.M.: Age-related increase in electromyography burst activity in males and females. J. Aging Res. 2013, 720,246 (2013). https://doi.org/10.1155/2013/720246
Thongpanja, S., Phinyomark, A., Hu, H., Limsakul, C., Phukpattaranont, P.: The effects of the force of contraction and elbow joint angle on mean and median frequency analysis for muscle fatigue evaluation. ScienceAsia 41(4), 263–272 (2015). https://doi.org/10.2306/scienceasia1513-1874.2015.41.263
Thongpanja, S., Phinyomark, A., Quaine, F., Laurillau, Y., Limsakul, C., Phukpattaranont, P.: Probability density functions of stationary surface EMG signals in noisy environments. IEEE Trans. Instrum. Meas. 65(7), 1547–1557 (2016). https://doi.org/10.1109/TIM.2016.2534378
Tkach, D., Huang, H., Kuiken, T.A.: Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7(1), 21 (2010). https://doi.org/10.1186/1743-0003-7-21
Vidovic, M.M., Hwang, H., Amsss, S., Hahne, J.M., Farina, D., Mller, K.: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(9), 961–970 (2016). https://doi.org/10.1109/TNSRE.2015.2492619
Waris, A., Niazi, I.K., Jamil, M., Englehart, K., Jensen, W., Kamavuako, E.N.: Multiday evaluation of techniques for EMG based classification of hand motions. IEEE J. Biomed. Health Inform. 1–1 (2018). https://doi.org/10.1109/JBHI.2018.2864335
Waris, A., Niazi, I.K., Jamil, M., Gilani, O., Englehart, K., Jensen, W., Shafique, M., Kamavuako, E.N.: The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. J. Electromyogr. Kinesiol. 40, 72–80 (2018). https://doi.org/10.1016/j.jelekin.2018.04.004
Xiang, C., Lantz, V., Kong-Qiao, W., Zhang-Yan, Z., Xu, Z., Ji-Hai, Y.: Feasibility of building robust surface electromyography-based hand gesture interfaces. In: Proceedings of 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2983–2986 (2009). https://doi.org/10.1109/IEMBS.2009.5332524
Yang, D., Yang, W., Huang, Q., Liu, H.: Classification of multiple finger motions during dynamic upper limb movements. IEEE J. Biomed. Health Inform. 21(1), 134–141 (2017). https://doi.org/10.1109/JBHI.2015.2490718
Yu, Y., Sheng, X., Guo, W., Zhu, X.: Attenuating the impact of limb position on surface EMG pattern recognition using a mixed-LDA classifier. In: Proceedings of 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1497–1502 (2017). https://doi.org/10.1109/ROBIO.2017.8324629
Zardoshti-Kermani, M., Wheeler, B.C., Badie, K., Hashemi, R.M.: EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehabil. Eng. 3(4), 324–333 (1995). https://doi.org/10.1109/86.481972
Zhai, X., Jelfs, B., Chan, R.H.M., Tin, C.: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11, 379 (2017). https://doi.org/10.3389/fnins.2017.00379
Zhang, H., Zhao, Y., Yao, F., Xu, L., Shang, P., Li, G.: An adaptation strategy of using LDA classifier for EMG pattern recognition. In: Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4267–4270 (2013). https://doi.org/10.1109/EMBC.2013.6610488
Zhang, X., Chen, X., Zhao, Z., Li, Q., Yang, J., Lantz, V., Wang, K.: An adaptive feature extractor for gesture SEMG recognition. In: Zhang, D. (ed.) Medical Biometrics, pp. 83–90. Springer, Berlin, Heidelberg (2007)
Zhou, P., Lock, B., Kuiken, T.A.: Real time ECG artifact removal for myoelectric prosthesis control. Physiol. Meas. 28(4), 397 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Phinyomark, A., Campbell, E., Scheme, E. (2020). Surface Electromyography (EMG) Signal Processing, Classification, and Practical Considerations. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_1
Download citation
DOI: https://doi.org/10.1007/978-981-13-9097-5_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9096-8
Online ISBN: 978-981-13-9097-5
eBook Packages: EngineeringEngineering (R0)