Skip to main content

Unipolar Cardiac Leads Between History and Science

  • Chapter
  • First Online:
  • 1546 Accesses

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The surface electrocardiography (ECG) uses a virtual reference point to measure the potential of chest electrodes. This reference potential is known as Wilson central terminal (WCT) and is assumed negligible (near zero) in amplitude. Consequently, the precordial leads have been named as the unipolar leads. Although this assumption was found incorrect immediate after this reference potential was introduced, it was difficult to measure its real amplitude. We recently introduced a 15-lead electrocardiography device that can record the traditional ECG leads in combination with the raw potential of limbs and chest electrodes directly referred to the circuit grounding. Consequently, we are able to record the potential of the raw chest electrodes, which we named as true unipolar chest leads. The aim of this study is to have a clear understanding of the WCT potential and its influence on the chest leads. Our records show that the true unipolar leads may be more sensitive for detecting cardiac diseases in the left anterior descending coronary artery in patients with non-ST elevation reported on chest leads.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our dataset name is WCTECGdb, and was published in the Physionet website (https://alpha.physionet.org/content/wctecgdb/).

References

  1. Webster, J.G.: Medical instrumentation-application and design. J. Clin. Eng. 3(3), 306 (1978)

    Article  Google Scholar 

  2. Macfarlane, P.W., van Oosterom, A., Janse, M.: Comprehensive Electrocardiology (2010)

    Google Scholar 

  3. Waller, A.D.: A demonstration on man of electromotive changes accompanying the heart’s beat. J. Physiol. 8(5), 229–234 (1887)

    Article  Google Scholar 

  4. Malmivuo, J., Plonsey, R.: Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press (1995). http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195058239.001.0001/acprof-9780195058239

  5. Fye, W.B.: A history of the origin, evolution, and impact of electrocardiography. Am. J. Cardiol. 73(13), 937–949 (1994). http://linkinghub.elsevier.com/retrieve/pii/000291499490135X

    Article  Google Scholar 

  6. Einthoven, W., Fahr, G., de Waart, A.: Über die Richtung und die manifeste Grösse der Potentialschwankungen im menschlichen Herzen und über den Einfluss der Herzlage auf die Form des Elektrokardiogramms. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 150(6–8), 275–315 (1913). http://link.springer.com/10.1007/BF01697566

    Article  Google Scholar 

  7. Anon: The mechanism and graphic registration of the heart beat. JAMA: J. Am. Med. Assoc. 85(23), 1832 (1925). http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.1925.02670230064033

  8. Kossmann, C.E.: Unipolar electrocardiography of Wilson: a half century later. Am. Heart J. 110(4), 901–904 (1985). http://linkinghub.elsevier.com/retrieve/pii/0002870385904843

    Article  Google Scholar 

  9. Wilson, F.N., et al.: Electrocardiograms that represent the potential variations of a single electrode. Am. Heart J. 9(4), 447–458 (1934). http://linkinghub.elsevier.com/retrieve/pii/S0002870334900934

    Article  Google Scholar 

  10. Wilson, F.N., et al.: On Einthoven’s triangle, the theory of unipolar electrocardiographic leads, and the interpretation of the precordial electrocardiogram. Am. Heart J. 32(3), 277–310 (1946). http://doi.wiley.com/10.1111/j.1365-2818.1858.tb04542.x

    Article  Google Scholar 

  11. Goldberger, E.: A simple, indifferent, electrocardiographic electrode of zero potential and a technique of obtaining augmented, unipolar, extremity leads. Am. Heart J. 23(4), 483–492 (1942). http://linkinghub.elsevier.com/retrieve/pii/S000287034290293X

    Article  Google Scholar 

  12. Burger, H.C.: The zero of potential: a persistent error. Am. Heart J. 49(4), 581–586 (1955). http://linkinghub.elsevier.com/retrieve/pii/0002870355900764

    Article  Google Scholar 

  13. Eckey, P., Fröhlich, R.: Archiv für Kreislaufforschung, pp. 349–356 (1938)

    Google Scholar 

  14. Burger, R.: Ueber das elektrische Feld des Herzens. Cardiology 3(1–2), 56–138 (1939). https://www.karger.com/Article/FullText/164634

    Article  Google Scholar 

  15. Dolgin, M., Grau, S., Katz, L.N.: Experimental studies on the validity of the central terminal of Wilson as an indifferent reference point. Am. Heart J. 37(6), 868–880 (1949)

    Article  Google Scholar 

  16. Bayley, R.H., et al.: The zero of potential of the electric field produced by the heart beat; the problem with reference to homogenous volume conductors. Circ. Res. 2(1), 4–13 (1954). http://www.ncbi.nlm.nih.gov/pubmed/13116387

    Article  Google Scholar 

  17. Bayley, R.H., Kinard, C.L.: The zero of potential of the electrical field produced by the heart beat; the problem with reference to the living human subject. Circ. Res. 2(2), 104–111 (1954). http://www.ncbi.nlm.nih.gov/pubmed/13141373

    Article  Google Scholar 

  18. Bayley, R.H., Schmidt, A.E.: The problem of adjusting the Wilson central terminal to a zero of potential in the living human subject. Circ. Res. 3(1), 94–102 (1955). http://circres.ahajournals.org/cgi/doi/10.1161/01.RES.3.1.94

    Article  Google Scholar 

  19. Okamoto, Y., Mashima, S.: The zero potential and Wilson’s central terminal in electrocardiography. Bioelectrochem. Bioenerg. 47, 291–295 (1998)

    Article  Google Scholar 

  20. Wolferth, C.C., Livezey, M.M.: A study of methods of making so-called unipolar electrocardiograms. Am. Heart J. 27(6), 764–782 (1944). https://www.sciencedirect.com/science/article/pii/S000287034490311X. Accessed 8 Feb 2019

    Article  Google Scholar 

  21. Dower, G.E., Osborne, J.A., Moore, A.D.: Measurement of the error in Wilson’s central terminal: an accurate definition of unipolar leads. Br. Heart J. 21, 352–60 (1959). http://www.ncbi.nlm.nih.gov/pubmed/13817890

    Article  Google Scholar 

  22. Fischer, G., et al.: On modeling the Wilson terminal in the boundary and finite element method. IEEE Trans. Biomed. Eng. 49(3), 217–224 (2002)

    Article  Google Scholar 

  23. Lynn, M.S., Timlake, W.P.: The use of multiple deflations in the numerical solution of singular systems of equations, with applications to potential theory. SIAM J. Numer. Anal. 5(2), 303–322 (1968). http://epubs.siam.org/doi/10.1137/0705027

    Article  MathSciNet  Google Scholar 

  24. Wach, P., et al.: Magnetic source imaging in the human heart: estimating cardiac electrical sources from simulated and measured magnetocardiogram data. Med. Biol. Eng. Comput. 35(3), 157–166 (1997). http://link.springer.com/10.1007/BF02530031

    Article  Google Scholar 

  25. Miyamoto, N., et al.: The absolute voltage and the lead vector of Wilson’s central terminal. Jpn. Heart J. 37(2), 203–214 (1996). http://www.ncbi.nlm.nih.gov/pubmed/8676547

    Article  Google Scholar 

  26. Miyamoto, N., et al.: On the potential of the Wilson central terminal with respect to an ideal reference for unipolar electrocardiography. J. Electrocardiol. 28(4), 336–337 (1995). http://linkinghub.elsevier.com/retrieve/pii/S0022073605800548

    Article  Google Scholar 

  27. Hoekema, R., Uijen, G.J., van Oosterom, A.: On selecting a body surface mapping procedure. J. Electrocardiol. 32(2), 93–101 (1999). https://linkinghub.elsevier.com/retrieve/pii/S0022073699900882

    Article  Google Scholar 

  28. Gargiulo, G.D.G., et al.: On the “zero of potential of the electric field produced by the heart beat”. A machine capable of estimating this underlying persistent error in electrocardiography. Machines 4(4), 18 (2016). http://www.mdpi.com/2075-1702/4/4/18

    Article  Google Scholar 

  29. Gargiulo, G.D.: True unipolar ECG machine for Wilson central terminal measurements. BioMed Res. Int. 2015, 586397 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26495303

  30. Gargiulo, G.D., et al.: Towards true unipolar bio-potential recording: a preliminary result for ECG. Physiol. Meas. 34(1), N1–N7 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23248178

    Article  Google Scholar 

  31. Gargiulo, G.D., et al.: Unipolar ECG circuits: towards more precise cardiac event identification. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 662–665. IEEE (2013). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571932

  32. Gargiulo, G.D., et al.: A 9-independent-leads ECG system from 10 electrodes: a practice preserving WCT-less true unipolar ECG system. In: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2015). http://ieeexplore.ieee.org/document/7348300/

  33. Webster, J.G.: Medical Instrumentation Application and Design. Wiley (2009)

    Google Scholar 

  34. Winter, B.B., Webster, J.G.: Reductionl of interference due to common mode voltage in biopotential amplifiers. IEEE Trans. Biomed. Eng. 30(1), 58–62 (1983)

    Article  Google Scholar 

  35. BurrBrown: INA 118 Precision low power Instrumentation Amplifier. Technical data. http://www.ti.com/lit/ds/symlink/ina118.pdf (2000)

  36. BurrBrown: INA116. Technical data. http://www.burbrown.com (2008)

  37. Gargiulo, G., et al.: True unipolar ECG leads recording (without the use of WCT). Heart Lung Circ. 22, S102 (2013)

    Article  Google Scholar 

  38. Gargiulo, G., Bifulco, P., et al.: Problems in assessment of novel biopotential front-end with dry electrode: a brief review. Machines 2(1), 87–98 (2014). http://www.mdpi.com/2075-1702/2/1/87/

    Article  Google Scholar 

  39. Gargiulo, G.D., et al.: Towards true unipolar ECG recording without the Wilson central terminal (preliminary results). Physiol. Meas. 34(9), 991–1012 (2013). http://stacks.iop.org/0967-3334/34/i=9/a=991?key=crossref.3ee57f77157cc5fa56247c2775f2317d

    Article  Google Scholar 

  40. Fisher, W., et al.: Event-related potentials in impulsively aggressive juveniles: a retrospective chart-review study. Psychiatry Res. 187(3), 409–413 (2011). http://linkinghub.elsevier.com/retrieve/pii/S0165178111001661

    Article  Google Scholar 

  41. Madias, J.E.: On recording the unipolar ECG limb leads via the Wilson’s vs the Goldberger’s terminals: aVR, aVL, and aVF revisited. Indian Pacing Electrophysiol. J. 8(4), 292–297 (2008). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572021/

  42. Undar, A., Calhoon, J.H., da Rocha, A.: Medical instrumentation: application and design. Control Eng. Pract. 5(2), 295–296 (1997). http://linkinghub.elsevier.com/retrieve/pii/S0967066197900307

    Article  Google Scholar 

  43. Gargiulo, G., Bifulco, P., et al.: Open platform, 32-channel, portable, data-logger with 32 PGA control lines for wearable medical device development. Electr. Lett. 50(16), 1127–1129 (2014). https://digital-library.theiet.org/content/journals/10.1049/el.2014.1791

    Article  Google Scholar 

  44. Gargiulo, G., Moeinzadeh, H.: Wilson central terminal ECG database. PhysioNet. https://alpha.physionet.org/content/wctecgdb/ (2019)

  45. Bacharova, L., et al.: Where is the central terminal located? In search of understanding the use of the Wilson central terminal for production of 9 of the standard 12 electrocardiogram leads. J. Electrocardiol. 38(2), 119–127 (2005). http://www.ncbi.nlm.nih.gov/pubmed/15892021

    Article  Google Scholar 

  46. Goldberger, E.: The validity of the Einthoven triangle hypothesis. Am. Heart J. 29(3), 369–377 (1945). https://www.sciencedirect.com/science/article/pii/0002870345903383. Accessed 4 Mar 2019

    Article  Google Scholar 

  47. Burger, H.C., van Brummelen, A.G.W., van Herpen, G.: Heart-vector and leads. Am. Heart J. 61(3), 317–323 (1961). http://linkinghub.elsevier.com/retrieve/pii/0002870361906019

    Article  Google Scholar 

  48. Einthoven, W.: Die galvanometrische Registrirung des menschlichen Elektrokardiogramms, zugleich eine Beurtheilung der Anwendung des Capillar-Elektrometers in der Physiologie. Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere 99(9–10), 472–480 (1938). http://link.springer.com/10.1007/BF01811855

    Article  Google Scholar 

  49. Gargiulo, G.D.G., et al.: On the Einthoven triangle: a critical analysis of the single rotating dipole hypothesis. Sensors 18(7), 2353 (2018). http://www.mdpi.com/1424-8220/18/7/2353

    Article  Google Scholar 

  50. Farrell, R.M., et al.: Effects of limb electrode placement on the 12- and 16-lead electrocardiogram. J. Electrocardiol. 41(6), 536–545 (2008). http://dx.doi.org/10.1016/j.jelectrocard.2008.07.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Moeinzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moeinzadeh, H. et al. (2020). Unipolar Cardiac Leads Between History and Science. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9097-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9096-8

  • Online ISBN: 978-981-13-9097-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics