Gravity Wave Characteristics in the Winter Antarctic Mesosphere by a Long-Term Numerical Simulation Using a Non-hydrostatic General Circulation Model

Part of the Springer Theses book series (Springer Theses)


In this chapter, a long-term simulation using the high-top non-hydrostatic general circulation model is carried out to examine mesospheric gravity waves observed by the PANSY radar in five months from April to August 2016. Successive runs lasting 7 days are made from the MERRA reanalysis data with an overlap of two days between each run. The data for analyses are prepared by extracting the last five days of each simulation. The simulated wind fields are closely compared to the PANSY radar observations and the MERRA reanalysis data. Moreover, statistical characteristics of the mesospheric disturbances simulated by NICAM such as ω spectra of each variable, kinetic and potential energies, momentum and energy fluxes of gravity waves are examined.


Gravity wave Mesosphere Dynamics 


  1. 1.
    Alexander, M. J., & Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. Journal of the Atmospheric Sciences, 64, 1652–1665.ADSCrossRefGoogle Scholar
  2. 2.
    Baumgaertner, A. J. G., McDonald, A. J., Hibbins, R. E., Fritts, D. C., Murphy, D. J., & Vincent, R. A. (2008). Short-period planetary waves in the Antarctic middle atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70(10), 1336–1350,
  3. 3.
    Blackman, R. B., & Tukey, J. W. (1958). The measurement of power spectra from the point of view of communications engineering. New York: Dover.zbMATHGoogle Scholar
  4. 4.
    Bloom, S., Takacs, L., DaSilva, A., & Ledvina, D. (1996). Data assimilation using incremental analysis updates. Monthly Weather Review, 124, 1256–1271.ADSCrossRefGoogle Scholar
  5. 5.
    Bühler, O., & McIntyre, M. E. (2005). Wave capture and wave-vortex duality. Journal of Fluid Mechanics, 534, 67–95.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, C., Chu, X., McDonald, A. J., Vadas, S. L., Yu, Z., Fong, W., & Lu, X. (2013). Inertia—gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8° S, 166.7° E). Journal of Geophysical Research: Atmospheres118(7), 2794–2808.Google Scholar
  7. 7.
    Chen, C., Chu, X., Zhao, J., Roberts, B. R., Yu, Z., Fong, W., Lu, X., & Smith, J. A. (2016). Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83_S, 166.67_E). Journal of Geophysical Research: Space Physics, 121, 1483–1502.
  8. 8.
    Geller, M. A., Alexander, M., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., Zhou, T. (2013). A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17).Google Scholar
  9. 9.
    Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., & Cocquerez, P. (2008). Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. Journal of the Atmospheric Sciences, 65(10), 3056–3070.Google Scholar
  10. 10.
    Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., & Riese, M. (2014). Differences in gravity wave drag between realistic oblique and assumed vertical propagation. Journal of Geophysical Research: Atmospheres, 119, 10081–10099.Google Scholar
  11. 11.
    Lane, T. P., & Knievel, J. C. (2005). Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. Journal of the Atmospheric Sciences, 62, 3408–3419.ADSCrossRefGoogle Scholar
  12. 12.
    Muraoka, Y., Fukao, S., Sugiyama, T., Yamamoto, M., Nakamura, T., Tsuda, T., et al. (1990). Frequency-spectra of mesospheric wind fluctuations observed with the MU radar. Geophysical Research Letters, 17(11), 1897–1900. Scholar
  13. 13.
    Murphy, D. J., French, W. J. R., & Vincent, R. A. (2007). Long-Period Planetary Waves in the mesosphere and lower thermosphere above davis, antarctica. Journal of Atmospheric and Solar-Terrestrial Physics. Scholar
  14. 14.
    Plougonven, R., Hertzog, A., & Guez, L. (2013). Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quarterly Journal of the Royal Meteorological Society, 139, 101–118.ADSCrossRefGoogle Scholar
  15. 15.
    Rienecker, M., et al. (2011) MERRA: NASA’s modernera retrospective analysis for research and applications. Journal of Climate, 24, 3648–3624.Google Scholar
  16. 16.
    Sakazaki, T., Fujiwara, M., Zhang, X., Hagan, M., & Forbes, J. (2012). Diurnal tides in the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. Journal Geophysical Research, 117, D13108. Scholar
  17. 17.
    Sato, K. (1990). Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. Journal of the Atmospheric Sciences, 47, 2803–2817.ADSCrossRefGoogle Scholar
  18. 18.
    Sato, K., Kohma, M., Tsutsumi, M., & Sato, T. (2017). Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. Journal of Geophysical Research: Atmospheres, 122(1), 3–19.ADSGoogle Scholar
  19. 19.
    Sato, K., Kumakura, T., & Takahashi, M. (1999). Gravity waves appearing in a high-resolution GCM simulation. Journal of the Atmospheric Sciences, 56(8), 1005–1018.ADSCrossRefGoogle Scholar
  20. 20.
    Sato, K., Tateno, S., Watanabe, S., & Kawatani, Y. (2012). Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. Journal of the Atmospheric Sciences, 69, 1378–1396. Scholar
  21. 21.
    Sato, K., Tsutsumi, M., Sato, T., Nakamura, T., Saito, A., Tomikawa, Y., et al. (2014). Program of the antarctic syowa MST/IS Radar (PANSY). J. Atmos. Solar-Terr. Phys., 118A, 2–15.ADSCrossRefGoogle Scholar
  22. 22.
    Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., & Takahashi, M. (2009). On the origins of mesospheric gravity waves. Geophysical Reseach Letters, 36, L19801. Scholar
  23. 23.
    Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., et al. (2014). The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1, 1–32.CrossRefGoogle Scholar
  24. 24.
    Shibuya, R., Sato, K., Tomikawa, Y., Tsutsumi, M., & Sato, T. (2015). A study of multiple tropopause structures caused by inertia-gravity waves in the Antarctica. Journal of the Atmospheric Sciences, 72, 2109–2130.ADSCrossRefGoogle Scholar
  25. 25.
    Shibuya, R., Sato, K., Tsutsumi, M., Sato, T., Tomikawa, Y., Nishimura, K., & Kohma, M. (2017). Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S), Atmospheric Chemistry and Physics, 17, 6455–6476,
  26. 26.
    Shibuya, R., & Sato, K. (2019). A study of the dynamical characteristics of inertia-gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model. Atmospheric Chemistry and Physics, 19, 3395–3415.
  27. 27.
    Watanabe, S., Sato, K., Kawatani, Y., & Takahashi, M. (2015). Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model. Geoscientific Model Development, 8, 1637–1644. Scholar
  28. 28.
    Wu, W.-S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130, 2905–2916.ADSCrossRefGoogle Scholar
  29. 29.
    Yasui, R., Sato, K., & Tsutsumi, M. (2016). Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. SOLA, 12, 46–50.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations