Advertisement

Introduction

Chapter
  • 101 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter describes a general introduction about previous studies of atmospheric gravity waves. Atmospheric gravity waves have been examined using many types of observational instruments and numerical models. Based on these findings, it has been widely recognized that further constraints for dynamical properties of gravity waves in the Southern Hemisphere middle atmosphere are inevitably required by using both a new observational instrument with fine vertical resolution and a numerical model with high resolution which explicitly resolve fine-scale gravity waves. This study aims to elucidate the dynamical characteristics of gravity waves in the Antarctic mesosphere such as wave parameters, propagation and generation mechanisms, by utilizing two novel methods; a first Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar in the Antarctic and a first high-top non-hydrostatic global atmospheric model.

Keywords

Gravity wave Observation Numerical model 

References

  1. 1.
    Alexander, M. J., & Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. Journal of the Atmospheric Sciences, 64, 1652–1665.ADSCrossRefGoogle Scholar
  2. 2.
    Alexander, M. J., Eckermann, S. D., Broutman, D., & Ma, J. (2009). Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophysical Research Letters, 36, L12816.  https://doi.org/10.1029/2009gl038587.ADSCrossRefGoogle Scholar
  3. 3.
    Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., et al. (2010). Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Quarterly Journal of the Royal Meteorological Society, 136, 1103–1124.Google Scholar
  4. 4.
    Alexander, M. J., & Teitelbaum, H. (2007). Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. Journal of Geophysical Research: Atmospheres, 112(D21).Google Scholar
  5. 5.
    Amemiya, A., & Sato, K. (2016). A new gravity wave parameterization including three-dimensional propagation. Journal of the Meteorological Society of Japan Ser. II, 94(3), 237–256.CrossRefGoogle Scholar
  6. 6.
    Arnold, K. S., & She, C. Y. (2003). Metal fluorescence lidar (light detection and ranging) and the middle atmosphere. Contemporary Physics, 44(1), 35–49.ADSCrossRefGoogle Scholar
  7. 7.
    Aso, T. (2007). A note on the semidiurnal non-migrating tide at polar latitudes. Earth Planets Space, 59, e21–e24.ADSCrossRefGoogle Scholar
  8. 8.
    Baldwin, M. P., & et al. (2003). The quasi-biennial oscillation. Reviews of Geophysics, 39, 179–229.Google Scholar
  9. 9.
    Becker, E. (2009). Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. Journal of the Atmospheric Sciences, 66, 647–666.  https://doi.org/10.1175/2008jas2735.1.ADSCrossRefGoogle Scholar
  10. 10.
    Beres, J. H., Alexander, M. J., & Holton, J. R. (2004). A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. Journal of the Atmospheric Sciences, 61(3), 324–337.ADSCrossRefGoogle Scholar
  11. 11.
    Butchart, N., et al. (2010). Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. Journal of Climate, 23(20), 5349–5374.ADSCrossRefGoogle Scholar
  12. 12.
    Butchart, N., et al. (2011). Multimodel climate and variability of the stratosphere. Journal Geophysical Research, 116, D05102.  https://doi.org/10.1029/2010jd014995.ADSCrossRefGoogle Scholar
  13. 13.
    Charron, M., & Manzini, E. (2002). Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. Journal of the Atmospheric Sciences, 59(5), 923–941.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, C., Chu, X., McDonald, A. J., Vadas, S. L., Yu, Z., Fong, W., & Lu, X. (2013). Inertia—gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8° S, 166.7° E). Journal of Geophysical Research: Atmospheres, 118(7), 2794–2808.Google Scholar
  15. 15.
    Chen, C., Chu, X., Zhao, J., Roberts, B. R., Yu, Z., Fong, W., Lu, X., & Smith, J. A. (2016). Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83_ S, 166.67_ E). Journal of Geophysical Research: Space Physics, 121, 1483–1502.  https://doi.org/10.1002/2015ja022127.
  16. 16.
    Chu, X., Huang, W., Fong, F., Yu, Z., Wang, Z., Smith, J. A., & Gardner, C. S. (2011). First lidar observations of polar mesospheric clouds and Fe temperatures at McMurdo (77.8° S, 166.7° E), Antarctica. Geophysical Research Letters, 38, L16810.  https://doi.org/10.1029/2011gl048373.
  17. 17.
    Cohen, N. Y., Gerber, E. P., & Bühler, O. (2014). What drives the Brewer-Dobson circulation? Journal of the Atmospheric Sciences, 71(10), 3837–3855.ADSCrossRefGoogle Scholar
  18. 18.
    Cohen, N. Y., Gerber, E. P., & Oliver Bühler, E. P. (2013). Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. Journal of the Atmospheric Sciences, 70(12), 3780–3798.ADSCrossRefGoogle Scholar
  19. 19.
    Cámara, A., Lott, F., & Hertzog, A. (2014). Intermittency in a stochastic parameterization of nonorographic gravity waves. Journal of Geophysical Research: Atmospheres, 119(21).Google Scholar
  20. 20.
    Dowdy, A. J., Vincent, R. A., Tsutsumi, M., Igarashi, K., Murayama, Y., Singer, W., & Murphy, D. J. (2007). Polar mesosphere and lower thermosphere dynamics: 1. Mean wind and gravity wave climatologies. Journal of Geophysical Research, 112, D17104.  https://doi.org/10.1029/2006jd008126.
  21. 21.
    Durran, D.R. (1990). Mountain waves and downslope winds. In: W. Blumen (Ed.), Atmospheric processes over complex terrain. Meteorology Monograph American Meteorological Society, 23(45), 59–81.Google Scholar
  22. 22.
    Eckermann, S. D., & Preusse, P. (1999). Global measurements of stratospheric mountain waves from space. Science, 286, 1534–1537.CrossRefGoogle Scholar
  23. 23.
    Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G., Russell, J. M., III, et al. (2011). Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. Journal Geophysical Research, 116, D19107.  https://doi.org/10.1029/2011jd015821.ADSCrossRefGoogle Scholar
  24. 24.
    Ern, M., Preusse, P., Alexander, M. J., & Warner, C. D. (2004). Absolute values of gravity wave momentum flux derived from satellite data. Journal of Geophysical Research: Atmospheres, 109(D20).Google Scholar
  25. 25.
    Eyring, V., Shepherd, T. G., & Waugh, D. W. (Eds.). (2010). SPARC CCMVal report on the evaluation of chemistry-climate models. SPARC Rep., 5, WCSSatoRP-132, WMO/TD-No. 1526, 434 p.Google Scholar
  26. 26.
    Fetzer, E. J., & Gille, J. C. (1994). Gravity wave variance in LIMS temperatures, part I, variability and comparison with background winds. Journal of the Atmospheric Sciences, 51, 2461–2483.ADSCrossRefGoogle Scholar
  27. 27.
    Fetzer, E. J., & Gille, J. C. (1996). Gravity wave variance in LIMS temperatures, part II, comparison with the zonal-mean momentum balance. Journal of the Atmospheric Sciences, 53, 398–410.ADSCrossRefGoogle Scholar
  28. 28.
    Forbes, J. M., Makarov, N. A., & Portnyagin, Y. I. (1995). First results from the meteor radar at south pole: A large 12-hour oscillation with zonal wavenumber one. Geophysical Reseach Letters, 22, 3247–3250.ADSCrossRefGoogle Scholar
  29. 29.
    Fritts, D. C. (2000). Errant inferences of gravity wave momentum and heat fluxes using airglow and lidar instrumentation: Corrections and cautions. Journal of Geophysical Research: Atmospheres, 105(D17), 22355–22360.CrossRefGoogle Scholar
  30. 30.
    Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41, 1003.  https://doi.org/10.1029/2001rg000106.ADSCrossRefGoogle Scholar
  31. 31.
    Fritts, D. C., & Vincent, R. A. (1987). Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave–tidal interaction model. Journal of the Atmospheric Sciences, 44(3), 605–619.Google Scholar
  32. 32.
    Fritts, et al. (2016). The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bulletin of the American Meteorological Society, 97(3), 425–453.  https://doi.org/10.1175/bams-d-14-00269.1.
  33. 33.
    Garcia, R. R., Dunkerton, T. J., Lieberman, R. S., & Vincent, R. A. (1997). Climatology of the semiannual oscillation of the tropical middle atmosphere. Journal Geophysical Research, 102(D22), 26019–26032.  https://doi.org/10.1029/97jd00207.ADSCrossRefGoogle Scholar
  34. 34.
    Garcia, F. J., Kelley, M. C., Makela, J. J., & Huang, C.-S. (2000). Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. Journal Geophysical Research, 105(A8), 18407–18415.  https://doi.org/10.1029/1999ja000305.ADSCrossRefGoogle Scholar
  35. 35.
    Gardner, C. S., Kane, T. J., Senft, D. C., Qian, J., & Papen, G. C. (1993). Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies. Journal Geophysical Research, 98(D9), 16865–16873.  https://doi.org/10.1029/93jd01477.ADSCrossRefGoogle Scholar
  36. 36.
    Geller, M. A., Alexander, M., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., et al. (2013). A comparison between gravity wave momentum fluxes in observations and climate models. Journal of Climate, 26(17), 6383.ADSCrossRefGoogle Scholar
  37. 37.
    Gille, J., et al. (2008). High resolution dynamics limb sounder: Experiment overview, recovery, and validation of initial temperature data. Journal of Geophysical Research, 113, D16S43,  https://doi.org/10.1029/2007jd008824.
  38. 38.
    Hamilton, K. (1991). Climatological statistics of stratospheric inertia-gravity waves deduced from historical rocketsonde wind and temperature data. Journal Geophysical Research, 96, 20831–20839.ADSCrossRefGoogle Scholar
  39. 39.
    Haynes, P. H. (1998). The latitudinal structure of the quasi-biennial oscillation. Quarterly Journal of the Royal Meteorological Society, 124, 2645–2670.ADSCrossRefGoogle Scholar
  40. 40.
    Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., & Cocquerez, P. (2008). Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. Journal of the Atmospheric Sciences, 65(10), 3056–3070.Google Scholar
  41. 41.
    Hibbins, R. E., Espy, P. J., Jarvis, M. J., Riggin, D. M., & Fritts, D. C. (2007). A climatology of tides and gravity wave variance in the MLT above Rothera, Antarctica obtained by MFradar. Journal of Atmospheric and Solar-Terrestrial Physics, 69(4–5), 578–588.ADSCrossRefGoogle Scholar
  42. 42.
    Hibbins, R. E., Marsh, O. J., McDonald, A. J., & Jarvis, M. J. (2010). A new perspective on the longitudinal variability of the semidiurnal tide. Geophysical Reseach Letters, 37, L14804.  https://doi.org/10.1029/2010gl044015.ADSCrossRefGoogle Scholar
  43. 43.
    Hindley, N. P., Wright, C. J., Smith, N. D., & Mitchell, N. J. (2015). The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmospheric Chemistry and Physics, 15(14), 7797–7818.ADSCrossRefGoogle Scholar
  44. 44.
    Hines, C. O. (1997). Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59(4), 371–386.Google Scholar
  45. 45.
    Hirota, I., & Niki, T. (1985). A statistical study of inertia-gravity waves in the middle atmosphere. Journal of the Meteorological Society of Japan. Ser. II, 63, 1055–1065.CrossRefGoogle Scholar
  46. 46.
    Hitchman, M. H., Gille, J. C., Rodgers, C. D., & Brasseur, G. (1989). The separated polar winter stratopause: A gravity wave driven climatological feature. Journal of the Atmospheric Sciences, 46(3), 410–422.ADSCrossRefGoogle Scholar
  47. 47.
    Hoffmann, L., Xue, X., & Alexander, M. J. (2013). A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. Journal of Geophysical Research: Atmospheres, 118, 416–434.  https://doi.org/10.1029/2012jd018658.ADSCrossRefGoogle Scholar
  48. 48.
    Hoffmann, P., Becker, E., Singer, W., & Placke, M. (2010). Seasonal variation of mesospheric waves at northern middle and high latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 72(14–15), 1068–1079.  https://doi.org/10.1016/j.jastp.2010.07.002.
  49. 49.
    Iwasaki, T., Yamada, S., & Tada, K. (1989). A parameterization scheme of orographic gravity wave drag with two different vertical partitionings. Part I: Impacts on medium-range forecasts. Journal of the Meteorological Society of Japan, 67, 11–27.CrossRefGoogle Scholar
  50. 50.
    Jewtoukoff, V., Hertzog, A., Plougonven, R., de la Cámara, A., & Lott, F. (2015). Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. Journal of the Atmospheric Sciences, 72, 3449–3468.  https://doi.org/10.1175/JAS-D-14-0324.1.ADSCrossRefGoogle Scholar
  51. 51.
    Jiang, J. H., Eckermann, S. D., Wu, D. L., Hocke, K., Wang, B., Ma, J., et al. (2005). Seasonal variation of gravity wave sources from satellite observation. Advances in Space Research, 35(11), 1925–1932.ADSCrossRefGoogle Scholar
  52. 52.
    K-1 Model Developers. (2004). K-1 coupled GCM (MIROC) description, K-1 Technical Report 1, pp. 1–34. University of Tokyo, Tokyo, Japan.Google Scholar
  53. 53.
    Kawatani, Y., & Hamilton, K. (2013). Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature, 497(7450), 478.ADSCrossRefGoogle Scholar
  54. 54.
    Kim, Y.-J., Eckermann, S., & Chun, H.-Y. (2003). An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmosphere–Ocean, 41, 65–98.  https://doi.org/10.3137/ao.410105.
  55. 55.
    Kitamura, Y., & Hirota, I. (1989). Small-scale disturbances in the lower stratosphere revealed by daily rawin sonde observations. Journal of the Meteorological Society of Japan, 67, 817–830.ADSCrossRefGoogle Scholar
  56. 56.
    Kohma, M., & Sato, K. (2011). The effects of atmospheric waves on the amounts of polar stratospheric clouds. Atmospheric Chemistry and Physics 11, 11535–11552.  https://doi.org/10.5194/acp-11-11535-2011.
  57. 57.
    Kovalam, S., & Vincent, R. A. (2003). Intradiurnal wind variations in the midlatitude and high-latitude mesosphere and lower thermosphere. Journal Geophysical Research, 108, 4135.  https://doi.org/10.1029/2002jd002500,d4.CrossRefGoogle Scholar
  58. 58.
    Leovy, C. (1964). Radiative equilibrium of the mesosphere. Journal of the Atmospheric Sciences, 21(3), 238–248.ADSCrossRefGoogle Scholar
  59. 59.
    Li, T., She, C.-Y., Liu, H.-L., Leblanc, T., & McDermid, I. S. (2007). Sodium lidar–Observed strong inertia-gravity wave activities in the mesopause region over Fort Collins, Colorado (41°N, 105°W). Journal Geophysical Research, 112, D22104.  https://doi.org/10.1029/2007jd008681.ADSCrossRefGoogle Scholar
  60. 60.
    Liu, H. L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., & Pedatella, N. M. (2014). Gravity waves simulated by high-resolution whole atmosphere community climate model. Geophysical Research Letters, 41(24), 9106–9112.ADSCrossRefGoogle Scholar
  61. 61.
    Lu, X., Liu, A. Z., Swenson, G. R., Li, T., Leblanc, T., & McDermid, I. S. (2009). Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere. Journal Geophysical Research, 114, D11101.  https://doi.org/10.1029/2008jd010112.ADSCrossRefGoogle Scholar
  62. 62.
    Manson, A. H. (1990). Gravity wave horizontal and vertical wave lengths; An update of measurements in the mesopause region ~80–100 km. Journal of the Atmospheric Sciences, 47, 2765–2773.ADSCrossRefGoogle Scholar
  63. 63.
    Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. Journal of Climate, 19, 3863–3881.ADSCrossRefGoogle Scholar
  64. 64.
    Matsuda, T. S., Nakamura, T., Ejiri, M. K., Tsutsumi, M., & Shiokawa, K. (2014). New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging. Journal of Geophysical Research: Atmospheres, 119, 9707–9718.  https://doi.org/10.1002/2014jd021543.ADSCrossRefGoogle Scholar
  65. 65.
    McDonald, A. J., George, S. E., & Woollands, R. M. (2009). Can gravity waves significantly impact PSC occurrence in the Antarctic? Atmospheric Chemistry and Physics, 9, 8825–8840.  https://doi.org/10.5194/acp-9-8825-2009.ADSCrossRefGoogle Scholar
  66. 66.
    McFarlane, N. A. (1987). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. Journal of the Atmospheric Sciences, 44(14), 1775–1800.ADSCrossRefGoogle Scholar
  67. 67.
    McLandress, C., Shepherd, T. G., Polavarau, S., & Beagley, S. R. (2012). Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry-climate models? Journal of the Atmospheric Sciences, 69, 802–818.ADSCrossRefGoogle Scholar
  68. 68.
    Miura, H., Satoh, M., Nasuno, T., Noda, A. T., & Oouchi, K. (2007). A Madden–Julian oscillation event realistically simulated by a global cloudresolving model. Science, 318, 1763–1765.ADSCrossRefGoogle Scholar
  69. 69.
    Miyazaki, K., Sato, K., Watanabe, S., Tomikawa, Y., Kawatani, Y., & Takahashi, M. (2010a). Transport and mixing in the extratropical tropopause region in a high‐vertical‐resolution GCM. Part II: Relative importance of large‐scale and small‐scale dynamics. Journal of the Atmospheric Sciences, 67(5), 1315–1336.Google Scholar
  70. 70.
    Miyazaki, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Takahashi, M., & Sato, K. (2010b). Transport and mixing in the extratropical tropopause region in a high‐vertical‐resolution GCM. Part I: Potential vorticity and heat budget analysis, Journal of the Atmospheric Sciences, 67(5), 1293–1314.Google Scholar
  71. 71.
    Murphy, D. J., Aso, T., Fritts, D. C., Hibbins, R. E., McDonald, A. J., Riggin, D. M., et al. (2009). Source regions for Antarctic MLT non-migrating semidiurnal tides. Geophysical Reseach Letters, 36, L09805.  https://doi.org/10.1029/2008gl037064.ADSCrossRefGoogle Scholar
  72. 72.
    Murphy, D. J., et al. (2006). A climatology of tides in the Antarctic mesosphere and lower thermosphere. Journal of Geophysical Research, 111.  https://doi.org/10.1029/2005jd006803.
  73. 73.
    Nakamura, T., Tsuda, T., Yamamoto, M., Fukao, S., & Kato, S. (1993). Characteristics of gravity waves in the mesosphere observed with the middle and upper atmosphere radar 2. Propagation direction. Journal of Geophysical Research, 98(D5), 8911–8923.  https://doi.org/10.1029/92jd03030.
  74. 74.
    Nakano, M., Sawada, M., Nasuno, T., & Satoh, M. (2015). Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. Geophysical Reseach Letters, 42, 565–571.  https://doi.org/10.1002/2014gl062479.ADSCrossRefGoogle Scholar
  75. 75.
    Nastrom, G. D., & Eaton, F. D. (2006). Quasi-monochromatic inertiagravity waves in the lower stratosphere from MST radar observations. Journal Geophysical Research, 111, D19103.  https://doi.org/10.1029/2006jd007335.ADSCrossRefGoogle Scholar
  76. 76.
    Neale, R. B., et al. (2010). Description of the NCAR Community Atmospheric Model (CAM 4.0). NCAR Tech. Note, 485, 212 p.Google Scholar
  77. 77.
    Nicolls, M. J., Varney, R. H., Vadas, S. L., Stamus, P. A., Heinselman, C. J., Cosgrove, R. B., & Kelley, M. C. (2010). Influence of an inertia-gravity wave on mesospheric dynamics: A case study with the Poker flat incoherent scatter radar. Journal of Geophysical Research, 115, D00N02.  https://doi.org/10.1029/2010jd014042.
  78. 78.
    Nozawa, T., Nagashima, T., Ogura, T., Yokohata, T., Okada, N., & Shiogama, H. (2007). Climate change simulations with a coupled ocean-atmosphere GCM called the Model for Interdisciplinary Research on Climate: MIROC. CGER Supercomputer Monograph Report, 12. Center for Global Environment Research, National Institute for Environmental Studies, Tsukuba, Japan.Google Scholar
  79. 79.
    Okamoto, K., Sato, K., & Akiyoshi, H. (2011). A study on the formation and trend of the Brewer-Dobson circulation. Journal Geophysical Research, 116, D10117.  https://doi.org/10.1029/2010jd014953.ADSCrossRefGoogle Scholar
  80. 80.
    Pavelin, E. G., Whiteway, J. A., & Vaughan, G. (2001). Observation of gravity wave generation and breaking in the lowermost stratosphere. Journal of Geophysical Research, 106, 5173–5179.ADSCrossRefGoogle Scholar
  81. 81.
    Plougonven, R., Hertzog, A., & Guez, L. (2013). Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quarterly Journal of the Royal Meteorological Society, 139, 101–118.ADSCrossRefGoogle Scholar
  82. 82.
    Plumb, R. A. (2002). Stratospheric transport. Journal of the Meteorological Society of Japan, 80, 793–809.CrossRefGoogle Scholar
  83. 83.
    Polavarapu, S., Ren, S., Rochon, Y., Sankey, D., Ek, N., Koshyk, J., et al. (2005). Data assimilation with the Canadian middle atmosphere model. Atmosphere-Ocean, 43, 77–100.CrossRefGoogle Scholar
  84. 84.
    Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble, R. G., et al. (2009). Global ray tracing simulations of the SABER gravity wave climatology. Journal Geophysical Research, 114, D08126.  https://doi.org/10.1029/2008jd011214.ADSCrossRefGoogle Scholar
  85. 85.
    Preusse, P., Schaeler, B., Bacmeister, J. T., & Offermann, D. (1999). Evidence for gravity waves in CRISTA temperatures. Advances in Space Research, 24(11), 1601–1604.ADSCrossRefGoogle Scholar
  86. 86.
    Rabier, F., & Coauthors. (2010). The concordiasi project in Antarctica for the International Polar Year (IPY). Bulletin of the American Meteorological Society, 91, 69–86.Google Scholar
  87. 87.
    Reid, I. M., & Vincent, R. A. (1987). Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia. Journal of Atmospheric and Terrestrial Physics, 49, 443–460.ADSCrossRefGoogle Scholar
  88. 88.
    Richter, J. H., Sassi, F., & Garcia, R. R. (2010). Toward a physically based gravity wave source parameterization in a general circulation model. Journal of the Atmospheric Sciences, 67, 136–156.ADSCrossRefGoogle Scholar
  89. 89.
    Sato, K. (1990). Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. Journal of the Atmospheric Sciences, 47, 2803–2817.ADSCrossRefGoogle Scholar
  90. 90.
    Sato, K. (1994). A statistical study of the structure, saturation and sources of inertiogravity waves in the lower stratosphere observed with the MU radar. Journal of Atmospheric and Terrestrial Physics, 56, 755–774.ADSCrossRefGoogle Scholar
  91. 91.
    Sato, K., & Dunkerton, T. J. (1997). Estimates of momentum flux associated with equatorial Kelvin and gravity waves. Journal Geophysical Research, 102, 26247–26261.ADSCrossRefGoogle Scholar
  92. 92.
    Sato, K., Kohma, M., Tsutsumi, M., & Sato, T. (2017). Frequency spectra and vertical profiles of wind fluctuations in the summer Antarctic mesosphere revealed by MST radar observations. Journal of Geophysical Research: Atmospheres, 122(1), 3–19.ADSGoogle Scholar
  93. 93.
    Sato, K., Tsutsumi, M., Sato, T., Nakamura, T., Saito, A., Tomikawa, Y., et al. (2014). Program of the Antarctic Syowa MST/IS Radar (PANSY). Journal of Atmospheric and Solar-Terrestrial Physics, 118A, 2–15.ADSCrossRefGoogle Scholar
  94. 94.
    Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., & Takahashi, M. (2009). On the origins of mesospheric gravity waves. Geophysical Reseach Letters, 36, L19801.  https://doi.org/10.1029/2009gl039908.ADSCrossRefGoogle Scholar
  95. 95.
    Sato, K., & Yoshiki, M. (2008). Gravity wave generation around the polar vortex in the stratosphere revealed y 3-hourly radiosonde observations at Syowa Station. Journal of the Atmospheric Sciences, 65, 3719–3735.ADSCrossRefGoogle Scholar
  96. 96.
    Sato, K., & Yamada, M. (1994). Vertical structure of atmospheric gravity waves revealed by the wavelet analysis. Journal of Geophysical Research: Atmospheres (1984–2012), 99(D10), 20623–20631.Google Scholar
  97. 97.
    Sato, K., Tateno, S., Watanabe, S., & Kawatani, Y. (2012). Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. Journal of the Atmospheric Sciences, 69, 1378–1396.  https://doi.org/10.1175/jas-d-11-0101.1.
  98. 98.
    Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., et al. (2014). The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1, 18.  https://doi.org/10.1186/s40645-014-0018-1.ADSCrossRefGoogle Scholar
  99. 99.
    Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., & Iga, S. (2008). Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. Journal of Computational Physics. The special issue of Predicting weather, climate and extreme events, 227, 3486–3514.  https://doi.org/10.1016/j.jcp.2007.02.006.
  100. 100.
    Scinocca, J. F. (2003). An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. Journal of the Atmospheric Sciences, 60, 667–682.ADSCrossRefGoogle Scholar
  101. 101.
    Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703.ADSCrossRefGoogle Scholar
  102. 102.
    Shibata, T., Sato, K., Kobayashi, H., Yabuki, M., & Shiobara, M. (2003). The Antarctic polar stratospheric clouds under the temperature perturbation by nonorogaphic inertia-gravity waves observed by micropulse lidar. Journal Geophysical Research, 108, 4105.  https://doi.org/10.1029/2002jd002713.CrossRefGoogle Scholar
  103. 103.
    Shibuya, R., Sato, K., Tomikawa, Y., Tsutsumi, M., & Sato, T. (2015). A study of multiple tropopause structures caused by inertia-gravity waves in the Antarctica. Journal of the Atmospheric Sciences, 72, 2109–2130.ADSCrossRefGoogle Scholar
  104. 104.
    Shine, K. P. (1987). The middle atmosphere in the absence of dynamical heat fluxes. Quarterly Journal of the Royal Meteorological Society, 113(476), 603–633.ADSCrossRefGoogle Scholar
  105. 105.
    Sigmond, M., & Shepherd, T. G. (2014). Compensation between resolved wave driving and parameterized orographic gravity wave driving of the Brewer-Dobson circulation and its response to climate change. Journal of Climate, 27(14), 5601–5610.ADSCrossRefGoogle Scholar
  106. 106.
    Song, I. S., & Chun, H. Y. (2005). Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. Journal of the Atmospheric Sciences, 62(1), 107–124.Google Scholar
  107. 107.
    Stolarski, R. S., Douglass, A. R., Gupta, M., Newman, P. A., Pawson, S., Schoeberl, M. R., et al. (2006). An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophysical Reseach Letters, 33, L21805.  https://doi.org/10.1029/2006gl026820.ADSCrossRefGoogle Scholar
  108. 108.
    Talaat, E. R., & Mayr, H. G. (2011). Model of semidiurnal pseudo tide in the high-latitude upper mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 2386–2391.ADSCrossRefGoogle Scholar
  109. 109.
    Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K., & Takahashi, M. (2012). Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM. Journal Geophysical Research, 117, D16101.  https://doi.org/10.1029/2011jd017243.ADSCrossRefGoogle Scholar
  110. 110.
    Tsuda, T., Inoue, T., Kato, S., Fukao, S., Fritts, D. C., & VanZandt, T. E. (1989). MST radar observations of a saturated gravity wave spectrum. Journal of the Atmospheric Sciences, 46(15), 2440–2447.ADSCrossRefGoogle Scholar
  111. 111.
    Tsutsumi, M., Tsuda, T., Nakamura, T., & Fukao, S. (1994). Temperature fluctuations near the mesopause inferred from meteor observations with the middle and upper atmosphere radar. Radio Science, 29(3), 599–610.  https://doi.org/10.1029/93rs03590.ADSCrossRefGoogle Scholar
  112. 112.
    VanZandt, T. E. (1982). A universal spectrum of buoyancy waves in the atmosphere. Geophysical Research Letters, 9(5), 575–578.ADSCrossRefGoogle Scholar
  113. 113.
    Vaughan, G., & Worthington, R. M. (2007). Inertia-gravity waves observed by the UK MST radar. Quarterly Journal Royal Meteorological Society, 133(S2), 179–188.ADSCrossRefGoogle Scholar
  114. 114.
    Walters, D. N., et al. (2011). The met office unified model global atmosphere 3.0 and JULES global land 3.0/3.1 configurations. Geoscientific Model Development, 4, 919–941.Google Scholar
  115. 115.
    Warner, C. D., & McIntyre, M. E. (1996). On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. Journal of the Atmospheric Sciences, 53, 3213–3235.ADSCrossRefGoogle Scholar
  116. 116.
    Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., Takahashi, M., & Sato, K. (2008). General aspects of a T213L256 middle atmosphere general circulation model. Journal Geophysical Research, 113, D12110.  https://doi.org/10.1029/2008jd010026.ADSCrossRefGoogle Scholar
  117. 117.
    Watanabe, S., Sato, K., & Takahashi, M. (2006). A general circulation model study of the orographic gravity waves over Antarctica excited by katabatic winds. Journal of Geophysical Research, 111, D18104.  https://doi.org/10.1029/2005jd006851.
  118. 118.
    Watanabe, S., & Miyahara, S. (2009). Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave-resolving general circulation model. Journal of Geophysical Research, 114, D07110.  https://doi.org/10.1029/2008jd011218.
  119. 119.
    Wu, D. L., Preusse, P., Eckermann, S. D., Jiang, J. H., de la Torre Juarez, M., Coy, L., et al. (2006). Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Advances in Space Research, 37(12), 2269–2277.ADSCrossRefGoogle Scholar
  120. 120.
    Wu, D. L., & Waters, J. W. (1996). Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophysical Research Letters, 23(24), 3631–3634.ADSCrossRefGoogle Scholar
  121. 121.
    Yamashita, C., England, S. L., Immel, T. J., & Chang, L. C. (2013). Gravity wave variations during elevated stratopause events using SABER observations. Journal of Geophysical Research: Atmospheres, 118(11), 5287–5303.ADSGoogle Scholar
  122. 122.
    Yasui, R., Sato, K., & Tsutsumi, M. (2016). Seasonal and interannual variation of mesospheric gravity waves based on MF radar observations over 15 years at Syowa Station in the Antarctic. SOLA, 12, 46–50.  https://doi.org/10.2151/sola.2016-010.
  123. 123.
    Yoshiki, M., & Sato, K. (2000). A statistical study of gravity waves in the polar regions based on operational radiosonde data. Journal Geophysical Research, 105(D14), 17995–18011.ADSCrossRefGoogle Scholar
  124. 124.
    Zülicke, C., & Becker, E. (2013). The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. Journal of Geophysical Research: Atmospheres, 118, 2255–2271.  https://doi.org/10.1002/jgrd.50219.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations